初中数学

如图1是一座抛物线型拱桥侧面示意图.水面宽 AB 与桥长 CD 均为 24 m ,在距离 D 点6米的 E 处,测得桥面到桥拱的距离 EF 1 . 5 m ,以桥拱顶点 O 为原点,桥面为 x 轴建立平面直角坐标系.

(1)求桥拱顶部 O 离水面的距离.

(2)如图2,桥面上方有3根高度均为 4 m 的支柱 CG OH DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为 1 m

①求出其中一条钢缆抛物线的函数表达式.

②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面 CE 与地面平行,支撑杆 AD BC 可绕连接点 O 转动,且 OA = OB ,椅面底部有一根可以绕点 H 转动的连杆 HD ,点 H CD 的中点, FA EB 均与地面垂直,测得 FA = 54 cm EB = 45 cm AB = 48 cm

(1)椅面 CE 的长度为    cm

(2)如图3,椅子折叠时,连杆 HD 绕着支点 H 带动支撑杆 AD BC 转动合拢,椅面和连杆夹角 CHD 的度数达到最小值 30 ° 时, A B 两点间的距离为    cm (结果精确到 0 . 1 cm )

(参考数据: sin 15 ° 0 . 26 cos 15 ° 0 . 97 tan 15 ° 0 . 27 )

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

【证明体验】

(1)如图1, AD ΔABC 的角平分线, ADC = 60 ° ,点 E AB 上, AE = AC .求证: DE 平分 ADB

【思考探究】

(2)如图2,在(1)的条件下, F AB 上一点,连结 FC AD 于点 G .若 FB = FC DG = 2 CD = 3 ,求 BD 的长.

【拓展延伸】

(3)如图3,在四边形 ABCD 中,对角线 AC 平分 BAD BCA = 2 DCA ,点 E AC 上, EDC = ABC .若 BC = 5 CD = 2 5 AD = 2 AE ,求 AC 的长.

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E 在边 AB 上, ΔBEC ΔFEC 关于直线 EC 对称,点 B 的对称点 F 在边 AD 上, G CD 中点,连结 BG 分别与 CE CF 交于 M N 两点.若 BM = BE MG = 1 ,则 BN 的长为    sin AFE 的值为   

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图是一个由5张纸片拼成的平行四边形 ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为 S 1 ,另两张直角三角形纸片的面积都为 S 2 ,中间一张矩形纸片 EFGH 的面积为 S 3 FH GE 相交于点 O .当 ΔAEO ΔBFO ΔCGO ΔDHO 的面积相等时,下列结论一定成立的是 (    )

A.

S 1 = S 2

B.

S 1 = S 3

C.

AB = AD

D.

EH = GH

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

背景:点 A 在反比例函数 y = k x ( k > 0 ) 的图象上, AB x 轴于点 B AC y 轴于点 C ,分别在射线 AC BO 上取点 D E ,使得四边形 ABED 为正方形.如图1,点 A 在第一象限内,当 AC = 4 时,小李测得 CD = 3

探究:通过改变点 A 的位置,小李发现点 D A 的横坐标之间存在函数关系.请帮助小李解决下列问题.

(1)求 k 的值.

(2)设点 A D 的横坐标分别为 x z ,将 z 关于 x 的函数称为" Z 函数".如图2,小李画出了 x > 0 时" Z 函数"的图象.

①求这个" Z 函数"的表达式.

②补画 x < 0 时" Z 函数"的图象,并写出这个函数的性质(两条即可).

③过点 ( 3 , 2 ) 作一直线,与这个" Z 函数"图象仅有一个交点,求该交点的横坐标.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

在扇形 AOB 中,半径 OA = 6 ,点 P OA 上,连结 PB ,将 ΔOBP 沿 PB 折叠得到△ O ' BP

(1)如图1,若 O = 75 ° ,且 BO ' AB ^ 所在的圆相切于点 B

①求 APO ' 的度数.

②求 AP 的长.

(2)如图2, BO ' AB ^ 相交于点 D ,若点 D AB ^ 的中点,且 PD / / OB ,求 AB ^ 的长.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图1是一种根据镜面反射,放大微小变化的装置.木条 BC 上的点 P 处安装一平面镜, BC 与刻度尺边 MN 的交点为 D ,从 A 点发出的光束经平面镜 P 反射后,在 MN 上形成一个光点 E .已知 AB BC MN BC AB = 6 . 5 BP = 4 PD = 8

(1) ED 的长为   

(2)将木条 BC 绕点 B 按顺时针方向旋转一定角度得到 BC ' (如图 2 ) ,点 P 的对应点为 P ' BC ' MN 的交点为 D ' ,从 A 点发出的光束经平面镜 P ' 反射后,在 MN 上的光点为 E ' .若 DD ' = 5 ,则 EE ' 的长为   

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知二次函数 y = - x 2 + 6 x - 5

(1)求二次函数图象的顶点坐标;

(2)当 1 x 4 时,函数的最大值和最小值分别为多少?

(3)当 t x t + 3 时,函数的最大值为 m ,最小值为 n ,若 m - n = 3 ,求 t 的值.

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC = 30 ° ACB = 45 ° AB = 2 ,点 P 从点 A 出发沿 AB 方向运动,到达点 B 时停止运动,连结 CP ,点 A 关于直线 CP 的对称点为 A ' ,连结 A ' C A ' P .在运动过程中,点 A ' 到直线 AB 距离的最大值是   ;点 P 到达点 B 时,线段 A ' P 扫过的面积为   

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知在 ΔACD 中, P CD 的中点, B AD 延长线上的一点,连结 BC AP

(1)如图1,若 ACB = 90 ° CAD = 60 ° BD = AC AP = 3 ,求 BC 的长.

(2)过点 D DE / / AC ,交 AP 延长线于点 E ,如图2所示,若 CAD = 60 ° BD = AC ,求证: BC = 2 AP

(3)如图3,若 CAD = 45 ° ,是否存在实数 m ,当 BD = mAC 时, BC = 2 AP ?若存在,请写出 m 的值;若不存在,请说明理由.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中 AB 的长应是   

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a 0 ) x 轴的交点为 A ( 1 , 0 ) B ( 3 , 0 ) ,点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) 是抛物线上不同于 A B 的两个点,记△ P 1 AB 的面积为 S 1 ,△ P 2 AB 的面积为 S 2 ,有下列结论:①当 x 1 > x 2 + 2 时, S 1 > S 2 ;②当 x 1 < 2 - x 2 时, S 1 < S 2 ;③当 | x 1 - 2 | > | x 2 - 2 | > 1 时, S 1 > S 2 ;④当 | x 1 - 2 | > | x 2 + 2 | > 1 时, S 1 < S 2 .其中正确结论的个数是 (    )

A.

1

B.

2

C.

3

D.

4

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,锐角三角形 ABC 内接于 O BAC 的平分线 AG O 于点 G ,交 BC 边于点 F ,连接 BG

(1)求证: ΔABG ΔAFC

(2)已知 AB = a AC = AF = b ,求线段 FG 的长(用含 a b 的代数式表示).

(3)已知点 E 在线段 AF 上(不与点 A ,点 F 重合),点 D 在线段 AE 上(不与点 A ,点 E 重合), ABD = CBE ,求证: B G 2 = GE GD

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

初中数学试题