如图,锐角三角形 ABC 内接于 ⊙ O , ∠ BAC 的平分线 AG 交 ⊙ O 于点 G ,交 BC 边于点 F ,连接 BG .
(1)求证: ΔABG ∽ ΔAFC .
(2)已知 AB = a , AC = AF = b ,求线段 FG 的长(用含 a , b 的代数式表示).
(3)已知点 E 在线段 AF 上(不与点 A ,点 F 重合),点 D 在线段 AE 上(不与点 A ,点 E 重合), ∠ ABD = ∠ CBE ,求证: B G 2 = GE ⋅ GD .
已知抛物线, (1)用配方法确定它的顶点坐标、对称轴; (2)取何值时,随增大而减小? (3)取何值时,抛物线在轴上方?
在△ABC中,AB=AC=5,BC=6,求cosB、sinA.
如图,已知O是坐标原点,B、C两点的坐标分别为(3,–1)、(2,1) . (1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形; (2)分别写出B、C两点的对应点B′、C′的坐标;
如图:已知△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135° 求证:△EAC∽△CBF
清明节期间,某中学团委组织八年级部分学生去离校2.4千米的某烈士陵园扫墓,回来时乘公交车所花时间比去时步行少用了36分钟,已知公交车速度是学生步行速度的5倍,求学生的步行速度.