如图1, D 为 ⊙ O 上一点,点 C 在直径 BA 的延长线上,且 ∠ CDA = ∠ CBD .
(1)判断直线 CD 与 ⊙ O 的位置关系,并说明理由;
(2)若 tan ∠ ADC = 1 2 , AC = 2 ,求 ⊙ O 的半径;
(3)如图2,在(2)的条件下, ∠ ADB 的平分线 DE 交 ⊙ O 于点 E ,交 AB 于点 F ,连结 BE .求 sin ∠ DBE 的值.
李大爷几年前承包了甲、乙两片荒山,各栽100棵杨梅树,现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量数如折线统计图所示. (1)分别计算甲、乙两片山上杨梅产量数样本的平均数; (2)试通过计算说明,哪片山上的杨梅产量较稳定?
如图,从热气球P上测得两建筑物A、B的底部的俯角分别为45°和30°,如果A、B两建筑物的距离为60米,P点在地面上的正投影恰好落在线段AB上,求热气球P的高度.(结果保留根号)
解方程:(1)x2+10="7x" (2)2x2+4x-5=0
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由. (3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E. (1)求证:四边形ABCE是平行四边形; (2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.