如图, ΔABC 是 ⊙ O 的内接三角形,过点 C 作 ⊙ O 的切线交 BA 的延长线于点 F , AE 是 ⊙ O 的直径,连接 EC .
(1)求证: ∠ ACF = ∠ B ;
(2)若 AB = BC , AD ⊥ BC 于点 D , FC = 4 , FA = 2 ,求 AD ⋅ AE 的值.
如图已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF. (1) 求证:四边形AECF是平行四边形; (2) 若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长 .
如图,两个大小不同的等腰直角三角形三角板如图甲所示放置,图乙是由它抽象出的几何图开,B,C,E在同一条直线上,连结DC。请找出图乙中的全等三角形,并给予证明(说明,结论中不得含有未标识的字母)
市区某楼盘准备以每平方米7000元的均价对外销售,由于国务院有关房地产的 新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两 次下调后,决定以每平方米5670元的均价开盘销售.求平均每次下调的百分率;
如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕着点O顺时针旋转90°,试解决下列问题: (1)画出四边形ABCD旋转后的图形; (2)求点C旋转过程中所经过的路径长.
解方程: