已知椭圆C:的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆C的右焦点为圆心,以为半径的圆相切.
(1)求椭圆的方程.
(2)若过椭圆的右焦点作直线交椭圆于两点,交y轴于点,且求证:为定值
已知函数.
(1)若函数在处取极值,求的值;
(2)如图,设直线将坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域(不含边界),若函数的图象恰好位于其中一个区域内,判断其所在的区域并求对应的的取值范围;
(3)比较与的大小,并说明理由.
(本小题满分10分)(选修4-4极坐标与参数方程选讲)
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为,=.
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.
(本小题满分14分)已知函数,其中常数.
(Ⅰ)当时,求函数的极值点;
(Ⅱ)证明:对任意恒成立;
(Ⅲ)对于函数图象上的不同两点,如果在函数图象上存在点(其中),使得在点M处的切线∥AB,则称直线AB存在“伴侣切线”.特别地,当,又称直线AB存在“中值伴侣切线”.
试问:当时,对于函数图象上不同两点A、B,直线AB是否存在“中值伴侣切线”,并证明你的结论.
(本小题满分12分)已知椭圆:()的长半轴长为2,离心率为,左右焦点分别为,.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆交于,两点,与以,为直径的圆交于,两点,且满足,求直线的方程.
(本小题满分14分)设曲线在点处的切线斜率为,且。对一切实数,不等式恒成立
(Ⅰ)求的值。
(Ⅱ)求函数的表达式;
(Ⅲ)求证:
(本小题满分16分)已知函数的图象上,以N(1,n)为切点的切线的倾斜角为.
(1)求m,n的值;
(2)是否存在最小的正整数k,使得不等式≤k-1991对于恒成立;
(3)求证:≤.
(本小题满分14分)已知函数,若函数在点处的切线与直线相互垂直.
(1)求的值.
(2)求函数的最大值.
(3)证明:对于任意的,都有成立.
已知函数.
(Ⅰ)若不等式的解集为,,求的取值范围;
(Ⅱ)若为整数,,且函数在上恰有一个零点,求的值;
(Ⅲ)在(Ⅱ)的条件下,若函数对任意的x∈,有恒成立,求实数的最小值.
已知函数.
(Ⅰ)若不等式的解集为,,求的取值范围;
(Ⅱ)若为整数,,且函数在上恰有一个零点,求的值;
(Ⅲ)在(Ⅱ)的条件下,若函数对任意的x∈,有恒成立,求实数的最小值.