(本小题满分10分)(选修4-4极坐标与参数方程选讲)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为,=.(1)求C1与C2交点的极坐标;(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.
已知函数.(Ⅰ)求函数的最小值;(Ⅱ)求证:;(Ⅲ)对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设函数,,与是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.
设函数对任意,都有,当时, (1)求证:是奇函数;(2)试问:在时 ,是否有最大值?如果有,求出最大值,如果没有,说明理由.(3)解关于x的不等式
(1)求(2).
已知函数的图象在与轴交点处的切线方程是.(I)求函数的解析式;(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.
某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是,,且各轮次通过与否相互独立.(I)设该选手参赛的轮次为,求的分布列和数学期望;(Ⅱ)对于(I)中的,设“函数是偶函数”为事件D,求事件D发生的概率.