高中数学

某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,. 现从这10人中随机选出2人作为该组代表参加座谈会.

(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;

(2)设 X 为选出的2人参加义工活动次数之差的绝对值,求随机变量 X 的分布列和数学期望.

来源:2016年全国统一高考数学试卷(天津卷)
  • 更新:2021-09-24
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = 4 tanxsin ( π 2 - x ) cos ( x - π 3 ) - 3 .

(1)求 f ( x ) 的定义域与最小正周期;

(2)讨论f(x)在区间 [ - π 4 , π 4 ] 上的单调性.

来源:2016年全国统一高考数学试卷(天津卷)
  • 更新:2021-09-24
  • 题型:未知
  • 难度:未知

已知,椭圆C以过点, A 1 , 3 2 ,两个焦点为 - 1 0 1 , 0

(Ⅰ)求椭圆C的方程;

(Ⅱ)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

来源:2009年全国统一高考文科数学试卷(辽宁卷)
  • 更新:2021-09-17
  • 题型:未知
  • 难度:未知

f ( x ) = e x ( a x 2 + x + 1 ) ,且曲线 y = f x x = 1 处的切线与x轴平行。

(Ⅰ)求 a 的值,并讨论 f x 的单调性;

(Ⅱ)证明:当 θ [ 0 , π 2 ] 时, f ( cos θ ) - f ( sin θ ) < 2       

来源:2009年全国统一高考文科数学试卷(辽宁卷)
  • 更新:2021-09-17
  • 题型:未知
  • 难度:未知

某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:

    

(Ⅰ)试分别估计两个分厂生产的零件的优质品率;

(Ⅱ)由于以上统计数据填下面 2 × 2 列联表,并问是否有99%的把握认为"两个分厂生产的零件的质量有差异"。

附: x 2 = n ( n 11 n 22 - n 12 n 21 ) 2 n 1 + n 2 + n + 1 n + 2 , p ( x 2 k ) k 0 . 05     0 . 01 3 . 841     6 . 635

来源:2009年全国统一高考文科数学试卷(辽宁卷)
  • 更新:2021-09-17
  • 题型:未知
  • 难度:未知

如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。

(Ⅰ)若 CD = 2 平面 ABCD 平面 DCEF ,求直线MN的长;

(Ⅱ)用反证法证明:直线ME与BN是两条异面直线。

来源:2009年全国统一高考文科数学试卷(辽宁卷)
  • 更新:2021-09-17
  • 题型:未知
  • 难度:未知

如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为 7 5 0 3 0 0 ,于水面C处测得B点和D点的仰角均为 6 0 0 ,AC=0.1km。试探究图中B,D间距离与另外哪两点距离相等,然后求B,D的距离(计算结果精确到0.01km, 2 1.414, 6 2.449)   

来源:2009年全国统一高考文科数学试卷(辽宁卷)
  • 更新:2021-09-17
  • 题型:未知
  • 难度:未知

等比数列 a n 的前n 项和为 s n ,已知 S 1 , S 3 , S 2 成等差数列

(1)求 a n 的公比 q

(2)求 a 1 - a 3 = 3 s n      

来源:2009年全国统一高考文科数学试卷(辽宁卷)
  • 更新:2021-09-17
  • 题型:未知
  • 难度:未知

(1)已知矩阵 M 2 - 3 1 - 1 所对应的线性变换把点 A x , y 变成点 A ' 13 , 5 ,试求M的逆矩阵及点A的坐标

(2)已知直线 l : 3 x + 4 y - 12 = 0 C : x = - 1 + 2 cos θ y = 2 + 2 sin θ ( θ 为参数 ) 试判断他们的公共点个数

(3)解不等式 2 x - 1 < x + 1 .

来源:2009年全国统一高考理科数学试卷(福建卷)
  • 更新:2021-09-16
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = 1 3 x 3 + a x 2 + bx ,且 f ' ( - 1 ) = 0                   

(1) 试用含 a 的代数式表示b,并求 f ( x ) 的单调区间;

(2)令 a = - 1 ,设函数 f ( x ) x 1 , x 2 ( x 1 < x 2 ) 处取得极值,记点 M x 1 , f ( x 1 ) N x 2 , f ( x 2 ) P m , f ( m ) , x 1 < m < x 2 ,请仔细观察曲线 f ( x ) 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:

(Ⅰ)若对任意的 m x 1 , x 2 ,线段MP与曲线 f ( x ) 均有异于M,P的公共点,试确定t的最小值,并证明你的结论;

(Ⅱ)若存在点 Q n , f n , x n < m ,使得线段 PQ 与曲线 f ( x ) 有异于 P Q 的公共点,请直接写出 m 的取值范围(不必给出求解过程)        

来源:2009年全国统一高考理科数学试卷(福建卷)
  • 更新:2021-09-16
  • 题型:未知
  • 难度:未知

已知A,B 分别为曲线C: x 2 a 2 + y 2 = 1 y 0 , a > 0 与x轴的左、右两个交点,直线 l 过点B,且与 x 轴垂直,S为 l 上异于点B的一点,连结AS交曲线C于点T.

(1)若曲线C为半圆,点T为圆弧 AB 的三等分点,试求出点S的坐标;

(2)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 a ,使得O,M,S三点共线?若存在,求出 a 的值,若不存在,请说明理由。               

来源:2009年全国统一高考理科数学试卷(福建卷)
  • 更新:2021-09-16
  • 题型:未知
  • 难度:未知

如图,某市拟在长为的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段 OSM ,该曲线段为函数 y = A sin ω x A > 0 , ω > 0 x 0 , 4 的图象,且图象的最高点为 S 3 , 2 3 ;赛道的后一部分为折线段 MNP ,为保证参赛运动员的安全,限定 MNP = 120 °

(Ⅰ)求A , ω 的值和M,P两点间的距离;

(Ⅱ)应如何设计,才能使折线段赛道 MNP 最长?                                          

来源:2009年全国统一高考理科数学试卷(福建卷)
  • 更新:2021-09-16
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是边长为 1 的正方形, MD 平面 ABCD NB 平面 ABCD ,且 MD = NB = 1 E BC 的中点.

(1)求异面直线NE与AM所成角的余弦值

(2)在线段AN上是否存在点S,使得 ES 平面 AMN ?若存在,求线段AS的长;若不存在,请说明理由                       

来源:2009年全国统一高考理科数学试卷(福建卷)
  • 更新:2021-09-16
  • 题型:未知
  • 难度:未知

从集合 1 , 2 , 3 , 4 , 5 的所有非空子集中,等可能地取出一个。

(1)记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;

(2)记所取出的非空子集的元素个数为 ξ ,求 ξ 的分布列和数学期望

来源:2009年全国统一高考理科数学试卷(福建卷)
  • 更新:2021-09-16
  • 题型:未知
  • 难度:未知

已知曲线 C n : x 2 - 2 nx + y 2 = 0 ( n = 1 , 2 , ) .从点 P ( - 1 , 0 ) 向曲线 C n 引斜率为 k n ( k n > 0 ) 的切线 l n ,切点为 P n ( x n , y n )

(1)求数列 { x n } { y n } 的通项公式;

(2)证明: x 1 x 3 x 5 x 2 n - 1 < 1 - x n 1 + x n < 2 sin x n y n   

来源:2009年全国统一高考理科数学试卷(广东卷)
  • 更新:2021-09-15
  • 题型:未知
  • 难度:未知

高中数学解答题