已知曲线 C n : x 2 - 2 nx + y 2 = 0 ( n = 1 , 2 , … ) .从点 P ( - 1 , 0 ) 向曲线 C n 引斜率为 k n ( k n > 0 ) 的切线 l n ,切点为 P n ( x n , y n ) .
(1)求数列 { x n } 与 { y n } 的通项公式;
(2)证明: x 1 ⋅ x 3 ⋅ x 5 ⋅ ⋯ ⋅ x 2 n - 1 < 1 - x n 1 + x n < 2 sin x n y n
已知函数(1)当时,求的极值.(2)当时,若是减函数,求的取值范围;
已知函数.(1)若,求的值;(2)求的单调增区间.
当时,解不等式:.
(本小题满分12分)已知函数,其中(1)若曲线在点处的切线方程为,求函数的解析式;(2)讨论函数的单调性;(3)若对任意的,不等式在上恒成立,求实数b的取值范围。
(本小题满分12分)已知各项均为正数的数列中,,是数列的前n项和,对任意的,有(1)求常数的值;(2)求数列的通项公式;(3)记,求数列的前n项和。