如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为 7 5 0 , 3 0 0 ,于水面C处测得B点和D点的仰角均为 6 0 0 ,AC=0.1km。试探究图中B,D间距离与另外哪两点距离相等,然后求B,D的距离(计算结果精确到0.01km, 2 ≈ 1.414, 6 ≈ 2.449)
在1与2之间插入个正数,使这个数成等比数列;又在1与2之间插入个正数,使这个数成等差数列.记.求:求数列和的通项;当时,比较与的大小,并证明你的结论
设数列满足当时,求,并由此猜想出的一个通项公式;当时,证明对所有的,有(ⅰ) (ⅱ)
设为常数,且证明对任意假设对任意有,求的取值范围.
试判断下面的证明过程是否正确: 用数学归纳法证明: 证明:(1)当时,左边=1,右边=1 ∴当时命题成立. (2)假设当时命题成立,即 则当时,需证 由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为 ∴式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.