如图,某市拟在长为的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段 OSM ,该曲线段为函数 y = A sin ω x A > 0 , ω > 0 , x ∈ 0 , 4 的图象,且图象的最高点为 S 3 , 2 3 ;赛道的后一部分为折线段 MNP ,为保证参赛运动员的安全,限定 ∠ MNP = 120 °
(Ⅰ)求A , ω 的值和M,P两点间的距离;
(Ⅱ)应如何设计,才能使折线段赛道 MNP 最长?
已知集合,集合,若A=B,求的值.
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
直线经过点P(5,5),且和圆C:相交截得的弦长为.求的方程.
求经过点A(4,-1),并且与圆相切于点M(1,2)的圆的方程.
如图,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为的菱形,侧面PAD为正三角形,其所在的平面垂直于底面ABCD.若G为AD的中点,⑴求证:BG⊥平面PAD;⑵求PB与面ABCD所成角.