某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:
(Ⅰ)试分别估计两个分厂生产的零件的优质品率;
(Ⅱ)由于以上统计数据填下面 2 × 2 列联表,并问是否有99%的把握认为"两个分厂生产的零件的质量有差异"。
附: x 2 = n ( n 11 n 22 - n 12 n 21 ) 2 n 1 + n 2 + n + 1 n + 2 , p ( x 2 ≥ k ) k 0 . 05 0 . 01 3 . 841 6 . 635
已知,命题:对任意,不等式恒成立;命题:存在,使不等式成立. (1)若为真命题,求的取值范围; (2)若为假,为真,求的取值范围。
已知数列的相邻两项、是关于的方程的两根,且。 (1)求证:数列是等比数列; (2)求数列的前项的和及数列的通项公式。
已知向量,记。 (1)若,求的值; (2)中,角、、的对边分别为、、,且满足,,,试求的面积。
已知函数.(为常数,) (Ⅰ)若是函数的一个极值点,求的值; (Ⅱ)求证:当时,在上是增函数; (Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围.
已知各项为正数的数列的前项和为,且满足, (1)求数列的通项公式 (2)令,数列的前项和为,若对一切恒成立,求的最小值.