某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:
(Ⅰ)试分别估计两个分厂生产的零件的优质品率;
(Ⅱ)由于以上统计数据填下面 2 × 2 列联表,并问是否有99%的把握认为"两个分厂生产的零件的质量有差异"。
附: x 2 = n ( n 11 n 22 - n 12 n 21 ) 2 n 1 + n 2 + n + 1 n + 2 , p ( x 2 ≥ k ) k 0 . 05 0 . 01 3 . 841 6 . 635
已知函数, . (Ⅰ)求函数的最大值和最小值; (Ⅱ)设函数在上的图象与轴的交点从左到右分别为M、N,图象的最高点为P,求与的夹角的余弦.
已知: 是定义在区间上的奇函数,且.若对于任意的时,都有. (1)解不等式. (2)若对所有恒成立,求实数的取值范围
已知:函数且 (1)若时,有意义,求实数的取值范围. (2)是否存在实数,使在区间上单调递减,且最大值为1?若存在,求出的值,若不存在,请说明理由.
已知:,求函数的最大值和最小值
设函数是定义在上的函数,且,当时,. (1)求时,的表达式; (2)解不等式: