已知函数 f ( x ) = 1 3 x 3 + a x 2 + bx ,且 f ' ( - 1 ) = 0
(1) 试用含 a 的代数式表示b,并求 f ( x ) 的单调区间;
(2)令 a = - 1 ,设函数 f ( x ) 在 x 1 , x 2 ( x 1 < x 2 ) 处取得极值,记点 M x 1 , f ( x 1 ) , N x 2 , f ( x 2 ) , P m , f ( m ) , x 1 < m < x 2 ,请仔细观察曲线 f ( x ) 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的 m ∈ x 1 , x 2 ,线段MP与曲线 f ( x ) 均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点 Q n , f n , x ≤ n < m ,使得线段 PQ 与曲线 f ( x ) 有异于 P 、 Q 的公共点,请直接写出 m 的取值范围(不必给出求解过程)
把所有正整数按上小下大,左小右大的原则排成如图所示的数表,其中第行共有个正整数.设(i、j∈N*)表示位于这个数表中从上往下数第i行,从左往右数第j个数. (Ⅰ)若=2010,求i和j的值; (Ⅱ)记N*),试比较与的大小,并说明理由.
已知函数 (1)将写成的形式,并求其图象对称中心的横坐标; (2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为,试求角的范围及此时函数的值域.
在直三棱柱ABC-A1B1C1中,∠ABC="90°," AB="BC=1." (1)求异面直线B1C1与AC所成角的大小; (2)若直线A1C与平面ABC所成角为45°, 求三棱锥A1-ABC的体积.
已知点集,其中,,点列在L中,为L与y轴的交点,等差数列的公差为1,。 (1)求数列的通项公式; (2)若=,令;试用解析式写出关于的函数。 (3)若=,给定常数m(),是否存在,使得,若存在,求出的值;若不存在,请说明理由。
在四棱锥中,,,底面,为的中点,. (Ⅰ)求四棱锥的体积; (Ⅱ) 求二面角的大小.