已知函数 f ( x ) = 1 3 x 3 + a x 2 + bx ,且 f ' ( - 1 ) = 0
(1) 试用含 a 的代数式表示b,并求 f ( x ) 的单调区间;
(2)令 a = - 1 ,设函数 f ( x ) 在 x 1 , x 2 ( x 1 < x 2 ) 处取得极值,记点 M x 1 , f ( x 1 ) , N x 2 , f ( x 2 ) , P m , f ( m ) , x 1 < m < x 2 ,请仔细观察曲线 f ( x ) 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的 m ∈ x 1 , x 2 ,线段MP与曲线 f ( x ) 均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点 Q n , f n , x ≤ n < m ,使得线段 PQ 与曲线 f ( x ) 有异于 P 、 Q 的公共点,请直接写出 m 的取值范围(不必给出求解过程)
一个袋子中装有6个红球和4个白球,假设袋子中的每一个球被摸到可能性是相等的。 (Ⅰ)从袋子中任意摸出3个球,求摸出的球均为白球的概率; (Ⅱ)一次从袋子中任意摸出3个球,若其中红球的个数多于白球的个数,则称“摸球成功”(每次操作完成后将球放回),某人连续摸了3次,记“摸球成功”的次数为,求的分布列和数学期望。
已知函数. (Ⅰ)求函数的最小值和最小正周期; (Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.
(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分) 已知动点到直线的距离是它到点的距离的倍. (Ⅰ)求动点的轨迹的方程; (Ⅱ)设轨迹上一动点满足:,其中是轨迹上的点,直线与的斜率之积为,若为一动点,为两定点,.
(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 已知一家公司生产某种品牌服装的年固定成本为万元,每生产千件需另投入万元.设该公司一年内生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且 (Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式; (Ⅱ)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大年利润.(注:年利润=年销售收入-年总成本).
(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 在如图所示的多面体中,平面,平面,,为的中点. (Ⅰ)求证:平面; (Ⅱ)求三棱锥的体积.