(本小题16分)函数的定义域为{x| x ≠1},图象过原点,且.
(1)试求函数的单调减区间;
(2)已知各项均为负数的数列前n项和为,满足,
求证:;
(本小题14分)已知函数f(x)=(x+-a)的定义域为A,值域为B.
(1)当a=4时,求集合A;
(2)当B=R时,求实数a的取值范围.
(本小题满分16分)
已知函数,,其中,,且。
(1)若1是关于的方程的一个解,求的值;
(2)当时,不等式恒成立,求的取值范围;
(3)当时,函数的最小值为,求的解析式.
(本小题满分14分)设二次函数满足下列条件:
①当∈R时,的最小值为0,且f (-1)=f(--1)成立;
②当∈(0,5)时,≤≤2+1恒成立。
(1)求的值;
(2)求的解析式;
(3)求最大的实数m(m>1),使得存在实数t,只要当∈时,就有成立。
已知圆过点且与圆:关于直线 对称,作斜率为的直线与圆交于两点,且点在直线的左上方。
(1)求圆C的方程。
(2)证明:△的内切圆的圆心在定直线上。
(3)若∠,求△的面积。
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,=2=2.
(1)求证:;
(2)求证:∥平面;
(3)求三棱锥的体积.
设椭圆的左,右两个焦点分别为,短轴的上端点为,短轴上的两个三等分点为,且为正方形。
(1)求椭圆的离心率;
(2)若过点作此正方形的外接圆的切线在轴上的一个截距为,求此椭圆方程。
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点是的中点。
(I)求证:;
(II)求证://平面.