(本小题满分14分)设二次函数满足下列条件:①当∈R时,的最小值为0,且f (-1)=f(--1)成立;②当∈(0,5)时,≤≤2+1恒成立。(1)求的值; (2)求的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当∈时,就有成立。
已知双曲线的两条渐进线过坐标原点,且与以点为圆心,为半径的圆相且,双曲线的一个顶点与点关于直线对称,设直线过点,斜率为。 (Ⅰ)求双曲线的方程; (Ⅱ)当时,若双曲线的上支上有且只有一个点到直线的距离为,求斜率的值和相应的点的坐标。
.一条斜率为1的直线与离心率为的双曲线交于两点,求直线与双曲线的方程
已知中心在原点,顶点在轴上,离心率为的双曲线经过点 (I)求双曲线的方程; (II)动直线经过的重心,与双曲线交于不同的两点,问是否存在直线使平分线段。试证明你的结论
已知抛物线与直线 (1)求证:抛物线与直线相交; (2)求当抛物线的顶点在直线的下方时,的取值范围; (3)当在的取值范围内时,求抛物线截直线所得弦长的最小值。
如图, 已知线段在直线上移动, 为原点. , 动点满足. (Ⅰ) 求动点的轨迹方程; (Ⅱ) 当时, 动点的轨迹与直线交于两点(点在点的下方), 且, 求直线的方程.