(本小题满分14分)给定函数
(1)试求函数的单调减区间;
(2)已知各项均为负的数列满足,求证:;
(3)设,为数列的前项和,求证:。
(本小题满分14分)如图,已知曲线与曲线交于点.直线与曲线分别相交于点.
(Ⅰ)写出四边形的面积与的函数关系;
(Ⅱ)讨论的单调性,并求的最大值.
(本小题满分12分)如果直线与轴正半轴,轴正半轴围成的四边形封闭区域(含边界)中的点,使函数的最大值为8,求的最小值
(本小题满分14分)设椭圆的离心率为=,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.
(I)求椭圆的方程;
(II)设椭圆上一动点关于直线的对称点为,求的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
在极坐标系中,已知圆的圆心坐标为,半径为,点在圆周上运动,
(Ⅰ)求圆的极坐标方程;
(Ⅱ)设直角坐标系的原点与极点重合,轴非负半轴与极轴重合,为中点,求点的参数方程.
已知数列的前项和为,函数(其中,为常数且)
(1)若当时,函数取得极大值,求的值;
(2)若当时,函数取得极小值,点,都在函数的图像上,(是的导函数),求数列的通项公式.