高中数学

(本小题满分12分)已知函数(其中是实数).
(Ⅰ)求的单调区间;
(Ⅱ)若设,且有两个极值点),求的取值范围.(其中为自然对数的底数,).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数为常数).
(1)若是函数的一个极值点,求的值;
(2)当时,试判断的单调性;
(3)若对任意的,使不等式恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数轴相切若直线分别交的图象于四点且四边形的面积为25则正实数的值为  

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数
(1)若函数处有极值,求函数的最大值;
(2)是否存在实数,使得关于的不等式上恒成立?若存在,求出的取值范围;若不存在,说明理由;
(3)证明:不等式

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知对任意的实数,直线都不与曲线相切.
(1)求实数的取值范围;
(2)当时,函数的图象上是否存在一点,使得点轴的距离不小于.试证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=x2﹣(a+2)x+alnx(a为实常数).
(Ⅰ)若a=﹣2,求曲线 y=f(x)在x=1处的切线方程;
(Ⅱ)讨论函数f(x)在[1,e]上的单调性;
(Ⅲ)若存在x∈[1,e],使得f(x)≤0成立,求实数a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数f(x)=x2-2(a+1)x+2alnx(a>0).
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)的单调区间;
(3)若f(x)≤0在区间[1,e]上恒成立,求实数a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数),).
(Ⅰ)若函数处的切线方程为,求实数的值;
(Ⅱ)求的单调减区间;
(Ⅲ)当时,若对任意的,存在,使得,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分) 已知
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2, 3),x1, x2∈[1, 3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数.
(I)函数在点处的切线与直线垂直,求a的值;
(II)讨论函数的单调性;
(III)不等式在区间上恒成立,求实数a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题12分)已知函数
(Ⅰ)若在点()处的切线方程为,求实数的值;
(Ⅱ)当时,讨论的单调性;
(Ⅲ)当时,在区间上恰有一个零点,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)对于函数,如果它们的图象有公共点P,且在点P处的切线相同,则称函数在点P处相切,称点P为这两个函数的切点.设函数,.
(Ⅰ)当,时,判断函数是否相切?并说明理由;
(Ⅱ)已知,且函数相切,求切点P的坐标;
(Ⅲ)设,点P的坐标为,问是否存在符合条件的函数,使得它们在点P处相切?若点P的坐标为呢?(结论不要求证明)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数处取得极值.
(1)求a、b的值;
(2)求过点且与曲线相切的切线方程.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)设函数是自然对数的底数,为常数.
(1)若处的切线的斜率为,求的值;
(2)在(1)的条件下,证明切线与曲线在区间至少有1个公共点;
(3)若的一个单调区间,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)已知函数.
(1)当时,求曲线处的切线方程;
(2)设函数,求函数的单调区间;
(3)若,在上存在一点,使得成立,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学组合几何试题