设函数.(1)若函数在处有极值,求函数的最大值;(2)是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;(3)证明:不等式.
已知以向量为方向向量的直线过点,抛物线C:的顶点关于直线的对称点在该抛物线的准线上.(Ⅰ)求抛物线C的方程;(Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若 (O为原点,A、B异于原点),试求点N的轨迹方程.
已知数列的前n项和为,且满足(Ⅰ)求的值; (Ⅱ)求数列的通项公式;
如图,平面⊥平面,四边形与都是直角梯形,∠=∠=,∥,∥,、分别为、的中点.(Ⅰ)证明:四边形是平行四边形;(Ⅱ)、、、四点是否共面?为什么?(III)设,证明:平面⊥平面.
在10支罐装饮料中,有2支是不合格产品,质检员从这10支饮料中抽取2支进行检验。(Ⅰ)求质检员检验到不合格产品的概率;(Ⅱ)若把这10支饮料分成甲、乙两组,对其容量进行测量,数据如下表所示(单位:ml):
请问哪组饮料的容量更稳定些?并说明理由.
在三角形中,.(Ⅰ)求的值; (Ⅱ)求面积的最大值