(本大题共12分)已知(1)求; (2).
已知函数,,且的最小正周期为.(Ⅰ)若,,求的值;(Ⅱ)求函数的单调增区间.
设集合Sn={1,2,3,,n),若X是Sn的子集,把X中所有元素的和称为X的“容量”(规定空集的容量为0),若X的容量为奇(偶)数,则称X为Sn的奇(偶)子集.(I)写出S4的所有奇子集;(Ⅱ)求证:Sn的奇子集与偶子集个数相等;(Ⅲ)求证:当n≥3时,Sn的所有奇子集的容量之和等于所有偶子集的容量之和.
已知椭圆(a>b>0)的离心率为,右焦点为(,0).(I)求椭圆的方程;(Ⅱ)过椭圆的右焦点且斜率为k的直线与椭圆交于点A(xl,y1),B(x2,y2),若, 求斜率k是的值.
已知函数f(x)=lnx-ax(a>0).(I)当a=2时,求f(x)的单调区间与极值;(Ⅱ)若对于任意的x∈(0,+),都有f(x)<0,求a的取值范围.
如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.(I)求证:DA⊥平面ABEF;(Ⅱ)求证:MN∥平面CDFE;(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.