(本小题满分12分)已知抛物线方程,点为其焦点,点在抛物线的内部,设点是抛物线上的任意一点,的最小值为4.(1)求抛物线的方程;(2)过点作直线与抛物线交于不同两点、,与轴交于点,且,试判断是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.
如图,在四边形ABCD中,AB=8,BC=3,CD=5, ,. (Ⅰ)求BD的长; (Ⅱ)求的面积.
已知函数.(Ⅰ)求的值;(Ⅱ)求函数的最小正周期和单调递增区间.
已知等比数列的公比,且,. (Ⅰ)求公比和的值; (Ⅱ)若的前项和为,求证.
已知x为实数,用表示不超过x的最大整数,例如对于函数f(x),若存在,使得,则称函数函数.(Ⅰ)判断函数是否是函数;(只需写出结论) (Ⅱ)设函数f(x)是定义R在上的周期函数,其最小正周期为T,若f(x)不是函数,求T的最小值.(Ⅲ)若函数是函数,求a的取值范围.
已知由整数组成的数列各项均不为0,其前n项和为 ,且(Ⅰ)求的值;(Ⅱ)求的通项公式;(Ⅲ)若时,取得最小值,求a的值.