(本大题共12分)如图 为正方体,一只青蛙开始在顶点A处,它每次可随意跳到相邻三顶点之一,若在五次内跳到点,则停止跳动;若5次内不能跳到点,跳完五次也停止跳动,求:(1)5次以内能到点的跳法有多少种?(2)从开始到停止,可能出现的跳法有多少种?
如图,在四棱锥中,底面是正方形,底面,,点是的中点,,交于点. (1)求证:平面平面; (2)求三棱锥的体积.
城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
(1)估计这60名乘客中候车时间少于10分钟的人数; (2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.
如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P. (1)若C是半径OA的中点,求线段PC的长; (2)设,求面积的最大值及此时的值.
已知数列为等差数列,且. (1)求数列的通项公式; (2)证明….
已知函数. (1)当时,求函数的单调区间; (2)若函数有两个极值点,且,求证:; (Ⅲ)设,对于任意时,总存在,使成立,求实数的取值范围.