已知,若为第二象限角,求
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修,旧墙足够长),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为xm,修建此矩形场地围墙的总费用为y(单位:元)。(Ⅰ)将y表示为x的函数:(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
设为数列的前项和,,,其中是常数.(I)求及;(II)若对于任意的,,,成等比数列,求的值.
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且(Ⅰ)确定角C的大小:(Ⅱ)若c=,且△ABC的面积为,求a+b的值。
(1)求过点P(-2, -4)的抛物线的标准方程。(2)已知双曲线C与双曲线共渐近线,且过点, 求此双曲线C的方程;
设命题“关于的x方程有两个实数根”,命题“关于x的不等式对恒成立”,若为假,为假,求实数的取值范围.