(本小题满分13分)已知函数.(1)当时,求曲线在处的切线方程;(2)设函数,求函数的单调区间;(3)若,在上存在一点,使得成立,求的取值范围.
甲 、 乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是 1 2 外,其余每局比赛甲队获胜的概率都是 2 3 .假设各局比赛结果相互独立. (Ⅰ)分别求甲队以 3 : 0 , 3 : 1 , 3 : 2 胜利的概率; (Ⅱ)若比赛结果为求 3 : 0 或 3 : 1 ,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分 、 对方得1分.求乙队得分 X 的分布列及数学期望.
如图所示,在三棱锥 ∆ P A Q 中, P B ⊥ 平面 A B Q , B A = B Q = B P , D , C , E , F 分别是 A Q , B Q , A P , B P 的中点, A Q = 2 B D , P D 与 E Q 交于 G , P C 与 F Q 交于点 H ,连接 G H .
(Ⅰ)求证: A B ▱ G H ; (Ⅱ)求二面角 D - G H - E 的余弦值.
设 ∆ A B C 的内角 A , B , C 所对的边分别为 a , b , c ,且 a + c = 6 , b = 2 , cos B = 7 9 .
(Ⅰ)求 a , c 的值; (Ⅱ)求 sin A - B 的值.
设 a , b , c 均为正数,且 a + b + c = 1 ,证明: (Ⅰ) a b + b c + a c ≤ 1 3 ; (Ⅱ) a 2 b + b 2 c + c 2 a ≥ 1
已知动点 P , Q 都在曲线C: x = 2 cos t y = 2 sin t ( t 为参数)上,对应参数分别为 t = a 与 t = 2 a ( 0 < a < 2 π ), M 为 P Q 的中点。
(Ⅰ)求 M 的轨迹的参数方程 (Ⅱ)将 M 到坐标原点的距离 d 表示为 a 的函数,并判断 M 的轨迹是否过坐标原点。