(本小题满分12分)已知函数f(x)=x2-2(a+1)x+2alnx(a>0).(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间;(3)若f(x)≤0在区间[1,e]上恒成立,求实数a的取值范围.
(本小题满分14分)已知数列中,,,其前项和满足.令. (Ⅰ)求数列的通项公式; (Ⅱ)若,求证:(); (Ⅲ)令(),求同时满足下列两个条件的所有的值:①对于任意正整数,都有;②对于任意的,均存在,使得时,.
(本小题满分16分)函数其中为常数,且函数和的图像在其与坐标轴的交点处的切线互相平行 (1)、求函数的解析式 (2)、若关于的不等式恒成立,求实数的取值范围。
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切. (I)求椭圆的方程; (II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程; (III)设与轴交于点,不同的两点在上,且满足求的取值范围.
(本小题满分12分) 已知数列满足 (1)求; (2)已知存在实数,使为公差为的等差数列,求的值; (3)记,数列的前项和为,求证:.
(本小题满分12分)
20090327
已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,准线l与x轴交于点K,已知|AK|=|AF|,三角形AFK的面积等于8.