(Ⅰ)求椭圆的方程; (Ⅱ)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求动点M的轨迹的方程; (Ⅲ)过椭圆的焦点作直线与曲线交于A、B两点,当的斜率为时,直线 上是否存在点M,使若存在,求出M的坐标,若不存在,说明理由
已知p:, q:x2-2x+1-m2≤0(m>0),若﹁p是﹁q的必要而不充分条件,求实数m的取值范围.
(1)若不等式的解集是,求不等式的解集.(2),试比较与的大小。
设函数,其中为常数.(1)当时,判断函数在定义域上的单调性;(2)若函数有极值点,求的取值范围及的极值点.
已知椭圆的离心率为,右焦点为,斜率为的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.
在数列中,,且. 求,猜想的表达式,并加以证明.