高中数学

已知函数.
(1)当时,的图象在点处的切线平行于直线,求的值;
(2)当时,在点处有极值,为坐标原点,若三点共线,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)设,求的最小值;
(Ⅱ)如何上下平移的图象,使得的图象有公共点且在公共点处切线相同.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)当时,求函数处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数有两个极值点,不等式恒成立,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)若有最值,求实数的取值范围;
(2)当时,若存在,使得曲线处的切线互相平行,求证

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数).
(1)判断曲线在点(1,)处的切线与曲线的公共点个数;
(2)当时,若函数有两个零点,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中ma均为实数.
(1)求的极值;
(2)设,若对任意的恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数()
(1)若在点处的切线方程为,求的解析式及单调递减区间;
(2)若上存在极值点,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数为常数),其图象是曲线
(Ⅰ)当时,求函数的单调减区间;
(Ⅱ)设函数的导函数为,若存在唯一的实数,使得同时成立,求实数的取值范围;
(Ⅲ)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为.问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,则的最小值为 (  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)讨论函数的单调性
(Ⅱ)若函数与函数的图像关于原点对称且就函数分别求解下面两问:
①问是否存在过点的直线与函数的图象相切? 若存在,有多少条?若不存在,说明理由.
②求证:对于任意正整数,均有为自然对数的底数)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)当时,求函数处的切线方程;
(2)是否存在实数,使得对任意的,恒有成立?若存在,求出实数的取值范围;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,当时,取极小值,则曲线在点处的切线方程为( )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)求函数的单调区间;
(2)当时,过原点分别作曲线的切线,已知两切线的斜率互为倒数,证明:
(3)设,当时,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知命题,函数的值大于.若是真命题,则命题可以是(  )

A.,使得
B.“”是“函数在区间上有零点”的必要不充分条件
C.是曲线的一条对称轴
D.若,则在曲线上任意一点处的切线的斜率不小于
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【原创题】已知函数,设曲线过点,且在点处的切线的斜率等于的导函数,满足;则(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学组合几何试题