高中数学

给出如下五个结论:
①存在α∈(0,),使sinα+cosα=;
②存在区间(a,b),使y=cosx为减函数而sinx<0;
③y=tanx在其定义域内为增函数;
④y=cos2x+sin(-x)既有最大值和最小值,又是偶函数;
⑤y=sin|2x+|的最小正周期为π.
其中正确结论的序号是   .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

函数f(x)=sin2x--.
(1)若x∈[,],求函数f(x)的最值及对应的x的值.
(2)若不等式[f(x)-m]2<1在x∈[,]上恒成立,求实数m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=(2cos2x-1)sin 2xcos 4x.
(1)求f(x)的最小正周期及最大值;
(2)若α,且f(α)=,求α的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数f(x)=+2cos2x.
(1)求f(x)的最大值,并写出使f(x)取最大值时x的集合;
(2)已知△ABC中,角ABC的对边分别为abc,若f(BC)=bc=2,求a的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

关于函数f(x)=4sin(2x+), (x∈R)有下列命题:
①y=f(x)是以2π为最小正周期的周期函数;
② y=f(x)可改写为y=4cos(2x-);
③y=f(x)的图象关于(-,0)对称;
④ y=f(x)的图象关于直线x=-对称;
其中正确的序号为               

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象经过点.
(1)求实数的值;
(2)求函数的最小正周期与单调递增区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,给出下列四个命题:
①若
的最小正周期是
在区间上是增函数;
的图象关于直线对称;
⑤当时,的值域为
其中正确的命题为                                                                                          (   )

A.①②④ B.③④⑤ C.②③ D.③④
来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)已知向量
定义函数=
(Ⅰ)求的最小正周期;在所给的坐标系中作出函数的图象
(不要求写出作图过程);
(Ⅱ)若=2,且14≤≤18,求的值

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

,函数的最大值为,则=_____________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)已知函数
(Ⅰ)求函数的最小正周期、最大值和最小值;
(Ⅱ)求函数的单调递增区间。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若函数,且的最小值是,则的单调递增区间是(   )

A.
B.
C.
D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

给出下列四个结论:
①存在实数,使
②函数是偶函数
③直线 是函数的一条对称轴方程
④若都是第一象限的角,且,则
其中正确结论的序号是____________________.(写出所有正确结论的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数f (x)=Asin(ωx+φ) (A>0,ω>0,|φ|<)在一个周期内的图象如图所示.

(1)求函数的解析式;
(2)设0<x<π,且方程f (x)=m有两个不同的实数根,求实数m的取值范围以及这两个根的和.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分10分)已知函数,且当时,的最小值为2,
(1)求的单调递增区间;
(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,且给定条件p:“”,
(1)求f(x)的最大值及最小值
(2)若又给条件q:“|f(x)﹣m|<2“且p是q的充分条件,求实数m的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学多面角及多面角的性质试题