(本小题14分)
已知
(Ⅰ)若求的表达式;
(Ⅱ)若函数f (x)和函数g(x)的图象关于原点对称,求函数g(x)的解析式;
(Ⅲ)若在上是增函数,求实数l的取值范围.
直线y=a(a为常数)与正切曲线y=tanωx(ω是常数且ω>0)相交,则相邻两交点间的距离是( )
A.π | B. | C. | D.与a的值有关 |
设,其中. 若对一切恒成立,则 ①; ②;
③既不是奇函数也不是偶函数;
④的单调递增区间是;
⑤ 存在经过点的直线与函数的图象不相交.
以上结论正确的是__________________(写出所有正确结论的编号).
已知函数
(其中
)
(I)求函数
的值域;
(II)若对任意的
,函数
,
的图象与直线
有且仅有两个不同的交点,试确定
的值(不必证明),并求函数
的单调增区间.
函数
的图象为
①图象
关于直线
对称;
②函数
在区间
内是增函数;
③由
的图象向右平移
个单位长度可以得到图象
.
以上三个论断中正确论断的个数为()
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
(本小题满分12分)如图,函数(其中)的图象与坐标轴的三个交点为,且,,,为的中点,.
(Ⅰ)求的值及的解析式;
(Ⅱ)设,求.
(本小题满分12分)在中,边a,b,c的对角分别为A,B,C;且,面积.
(Ⅰ)求a的值;
(Ⅱ)设,将图象上所有点的横坐标变为原来的(纵坐标不变)得到的图象,求的单调增区间.
(本小题满分12分)
已知函数
(1)求函数的最大值,以及取到最大值时所对应的的集合;
(2)在上恒成立,求实数的取值范围。
(本小题满分13分)函数y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=
π时,y有最大值3,当x=6π时,y有最小值-3.
(1)求此函数解析式;
(2)写出该函数的单调递增区间;
(3)是否存在实数m,满足不等式Asin()>Asin()?若存在,求出m值(或范围),若不存在,请说明理由.
(本小题满分10分)已知函数,且当时,的最小值为2,
(1)求的单调递增区间;
(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.