(本小题满分10分)已知函数,且当时,的最小值为2,(1)求的单调递增区间;(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
(本小题满分12分)已知等差数列的前项和满足,. (1)求的通项公式; (2)求数列的前项和.
选修4-5:不等式选讲 已知,(). (1)解不等式; (2)若不等式恒成立,求的取值范围.
选修4-4:坐标系与参数方程 在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标中,圆的方程为. (1)写出直线的普通方程和圆的直角坐标方程; (2)若点坐标为,圆与直线交于,两点,求的值.
选修4-1:几何证明选讲 如图,直线与相切于点,是的弦,的平分线交于点,连结,并延长与直线相交于点,若,. (1)求证:; (2)求弦的长.
已知函数. (1)当时,求函数图象在点处的切线方程; (2)当时,讨论函数的单调性; (3)是否存在实数,对任意的且有恒成立?若存在,求出 的取值范围;若不存在,说明理由.