等差数列中,前三项分别为,前项和为,且。(1)、求和的值; (2)、求T=
(本小题满分13分)已知点,,点为坐标原点,点在第二象限,且,记.(1)求的值;(2)若,求的面积.
(本小题满分13分)某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2),如下表所示:
(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.
已知椭圆的中心在坐标原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若,是椭圆上关轴对称的任意两点,设点,连接交椭圆于另一点,求证:直线与轴相交于定点;(Ⅲ)设为坐标原点,在(Ⅱ)的条件下,过点的直线交椭圆于,两点,求的取值范围.
已知数列的前n项和(),数列.(Ⅰ)求证:数列是等差数列,并求数列的通项公式;(Ⅱ)设数列的前n项和为,证明:且时,;(Ⅲ)设数列满足,(为非零常数,),问是否存在整数,使得对任意 ,都有?
已知函数(Ⅰ)若求在处的切线方程;(Ⅱ)求在区间上的最小值;(Ⅲ)若在区间上恰有两个零点,求的取值范围.