(本小题满分12分)在中,边a,b,c的对角分别为A,B,C;且,面积.(Ⅰ)求a的值;(Ⅱ)设,将图象上所有点的横坐标变为原来的(纵坐标不变)得到的图象,求的单调增区间.
(本题满分10分)选修4—4:坐标系与参数方程已知直线的极坐标方程为,曲线的参数方程为( 为参数).(Ⅰ)求直线的直角坐标方程;(Ⅱ)设直线与曲线交于A,B两点,原点为,求的面积.
(本题满分10分)选修4—1:几何证明选讲已知中,,,垂足为D,,垂足为F,,垂足为E.求证:(Ⅰ);(Ⅱ)
已知函数(1)当时,求函数的单调区间;(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?
设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.(1)求椭圆的离心率; (2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;
如图所示,在棱长为4的正方体ABCD—A1B1C1D1中,点E是棱CC1的中点。 (I)求三棱锥D1—ACE的体积;(II)求异面直线D1E与AC所成角的余弦值;(III)求二面角A—D1E—C的正弦值。