高中数学

把函数的图像沿轴向左平移个单位,所得函数的图像关于直线对称,则的最小值为(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数.
(1)若直线是函数的图像的一条对称轴,求的值;
(2)若,求的值域.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题12分)已知定义在区间上的函数的图像关于直线对称,当时,函数
(1)求的值;
(2)求的表达式;
(3)若关于的方程有解,那么将方程在取某一确定值时所求得的所有解的和记为,求的所有可能取值及相应的的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题满分12分)
已知函数
)求函数上的单调区间;
)在ΔABC中,A为锐角,且角A、B、C所对的边分别为a、b、c,若a= ,,求△ABC面积的最大值.  

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数是(  )

A.最小正周期为的奇函数
B.最小正周期为的偶函数
C.最小正周期为的奇函数
D.最小正周期为的偶函数
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = sin x .若存在 x 1 , x 2 , . . . x m 满足 0 x 1 < x 2 < . . . < x m 6 π ,且 f ( x 1 ) - f ( x 2 ) + f ( x 2 ) - f ( x 3 ) + . . . + f ( x m - 1 ) - f ( x m ) = 12 ( m 2 , m N * ) ,则 m 的最小值为 .

来源:2015年全国普通高等学校招生统一考试文科数学
  • 更新:2021-09-24
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知,且函数
(1)设方程内有两个零点,求的值;
(2)若把函数的图像向左平移个单位,再向上平移2个单位,得函数图像,求函数上的单调增区间.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某同学用"五点法"画函数 f ( x ) = A sin ( ω x + φ ) ( ω > 0 , φ < π 2 ) 在某一个周期内的图象时,列表并填入了部分数据,如下表:

image.png

(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数 f ( x ) 的解析式;
(Ⅱ)将 y = f ( x ) 图象上所有点向左平行移动 π 6 个单位长度,得到 y = g ( x ) 图象,求 y = g ( x ) 的图象离原点 O 最近的对称中心.

来源:2015年全国普通高等学校招生统一考试文科数学
  • 更新:2021-09-24
  • 题型:未知
  • 难度:未知


已知函数
(Ⅰ)列表并画出函数上的简图;
(Ⅱ)若,求

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=sinx+cosx.
(1)若f(x)=2f(﹣x),求的值;
(2)求函数F(x)=f(x)•f(﹣x)+f2(x)的最大值和单调递增区间.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于函数f(x)=4sin(2x+),(x∈R)有下列命题:
①y=f(x)是以2π为最小正周期的周期函数;
②y=f(x)可改写为y=4cos(2x﹣);
③y=f(x)的图象关于点(﹣,0)对称; 
④y=f(x)的图象关于直线x=对称;
其中正确的序号为     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)设,将函数表示为关于的函数,求的解析式;
(2)对任意,不等式恒成立,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数
(Ⅰ)求的最大值,并写出使取最大值时x的集合;
(Ⅱ)已知中,角A、B、C的对边分别为a、b、c,若,求的面积的最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数)在时有最小值
(Ⅰ)求的值;
(Ⅱ)在中,分别是角所对的边,已知,求角的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设在中,内角所对边的边长分别为,且
,求的值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学多面角及多面角的性质试题