初中数学

如图,一次函数 y k 1 x + b 与反比例函数 y = k 2 x 在第一象限交于 M 2 8 N两点,NA垂直x轴于点AO为坐标原点,四边形OANM的面积为 38

(1)求反比例函数及一次函数的解析式;

(2)点P是反比例函数第三象限内的图象上一动点,请简要描述使△PMN的面积最小时点P的位置(不需证明),并求出点P的坐标和△PMN面积的最小值.

来源:2022年四川省绵阳市中考数学试卷
  • 更新:2022-10-25
  • 题型:未知
  • 难度:未知

某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:

水果品种

梨子

菠萝

苹果

车厘子

批发价格(元/kg

4

5

6

40

零售价格(元/kg

5

6

8

50

请解答下列问题:

(1)第一天,该经营户用 1700 元批发了菠萝和苹果共 300 k g ,当日全部售出,求这两种水果获得的总利润?

(2)第二天,该经营户依然用 1700 元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于 88 k g ,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?

来源:2022年四川省绵阳市中考数学试卷
  • 更新:2022-10-25
  • 题型:未知
  • 难度:未知

目前,全球淡水资源分布不均、总量不足是人类面临的共同问题.某市在实施居民用水定额管理前,通过简单随机抽样对居民生活用水情况进行了调查,获得了若干个家庭去年的月均用水量数据(单位:t),整理出了频数分布表,频数分布直方图和扇形统计图,部分信息如下:

月均用水量(t

2 x 3 . 5

3 . 5 x 5

5 x 6 . 5

6 . 5 x 8

8 x 9 . 5

频数

7



6


对应的扇形区域

A

B

C

D

E

根据以上信息,解答下列问题:

(1)补全频数分布直方图,并求出扇形图中扇形E对应的圆心角的度数;

(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使该市60%的家庭水费支出不受影响,你觉得家庭月均用水量应该定为多少?并说明理由.

来源:2022年四川省绵阳市中考数学试卷
  • 更新:2022-10-25
  • 题型:未知
  • 难度:未知

1)计算: 2 tan 60 ° + 3 - 2 + 1 2022 1 - 12 2

(2)先化简,再求值: x - y x - x - 3 y x - y ÷ x + y x - y ,其中 x 1 y 100

来源:2022年四川省绵阳市中考数学试卷
  • 更新:2022-10-25
  • 题型:未知
  • 难度:未知

ΔABC 中, C = 90 ° AC > BC D AB 的中点. E 为直线 AC 上一动点,连接 DE ,过点 D DF DE ,交直线 BC 于点 F ,连接 EF

1 )如图 1 ,当 E 是线段 AC 的中点时,设 AE = a BF = b ,求 EF 的长(用含 a , b 的式子表示);

2 )当点 E 在线段 CA 的延长线上时,依题意补全图 2 ,用等式表示线段 AE EF BF 之间的数量关系,并证明.

来源:2020年北京市高级中等学校中考数学试卷
  • 更新:2022-05-11
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中, M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 为抛物线 y = a x 2 + bx + c ( a > 0 ) 上任意两点,其中 x 1 < x 2

1)若抛物线的对称轴为 x = 1 ,当 x 1 , x 2 为何值时, y 1 = y 2 = c ;

2)设抛物线的对称轴为 x = t .若对于 x 1 + x 2 > 3 ,都有 y 1 < y 2 ,求 t 的取值范围.

来源:2020年北京市高级中等学校中考数学试卷
  • 更新:2022-05-11
  • 题型:未知
  • 难度:未知

小云统计了自己所住小区 5 1 日至 30 日的厨余垃圾分出量(单位:千克),相关信息如下:

a .小云所住小区 5 1 日至 30 日的厨余垃圾分出量统计图:

b .小云所住小区 5 1 日至 30 日分时段的厨余垃圾分出量的平均数如下:

1 )该小区 5 1 日至 30 日的厨余垃圾分出量的平均数约为         (结果取整数)

2 )已知该小区 4 月的厨余垃圾分出量的平均数为 60 ,则该小区 5 1 日至 30 日的厨余垃圾分出量的平均数约为 4 月的        倍(结果保留小数点后一位);

3 )记该小区 5 1 日至 10 日的厨余垃圾分出量的方差为 s 1 2 , 5 11 日至 20 日的厨余垃圾分出量的方差为 s 2 2 5 21 日至 30 日的厨余垃圾分出量的方差为 s 3 2 .直接写出 s 1 2 , s 2 2 , s 3 2 的大小关系.

来源:2020年北京市高级中等学校中考数学试卷
  • 更新:2022-05-11
  • 题型:未知
  • 难度:未知

小云在学习过程中遇到一个函数 y = 1 6 | x | ( x 2 - x + 1 ) ( x - 2 ) .下面是小云对其探究的过程,请补充完整:

1 )当 - 2 x < 0 时,对于函数 y 1 = | x | ,即 y 1 = - x ,当 - 2 x < 0 时, y 1 x 的增大而       ,且 y 1 > 0 ;对于函数 y 2 = x 2 - x + 1 ,当 - 2 x < 0 时, y 2 x 的增大而       ,且 y 2 > 0 ;结合上述分析,进一步探究发现,对于函数 y ,当 - 2 x < 0 时, y x 的增大而        

2 )当 x 0 时,对于函数 y ,当 x 0 时, y x 的几组对应值如下表:

综合上表,进一步探究发现,当 x 0 时, y x 的增大而增大.在平面直角坐标系 xOy 中,画出当 x 0 时的函数 y 的图象.

3 )过点 ( 0 m ) m > 0 )作平行于 x 轴的直线 l ,结合( 1 )( 2 )的分析,解决问题:若直线 l 与函数 y = 1 6 | x | ( x 2 - x + 1 ) ( x - 2 ) 的图象有两个交点,则 m 的最大值是   

来源:2020年北京市高级中等学校中考数学试卷
  • 更新:2022-05-11
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C BA 延长线上一点, CD O 的切线, D 为切点, OF AD 于点 E ,交 CD 于点 F

1 )求证: ADC = AOF

2 )若 sin C = 1 3 BD = 8 ,求 EF 的长.

来源:2020年北京市高级中等学校中考数学试卷
  • 更新:2022-05-11
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,一次函数 y = kx + b ( k 0 ) 的图象由函数 y = x 的图象平移得到,且经过点 ( 1 2 )

1 )求这个一次函数的解析式;

2 )当 x > 1 时,对于 x 的每一个值,函数 y = mx ( m 0 ) 的值大于一次函数 y = kx + b 的值,直接写出 m 的取值范围.

来源:2020年北京市高级中等学校中考数学试卷
  • 更新:2022-05-11
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的对角线 AC BD 相交于点 O E AD 的中点,点 F , G AB 上, EF AB OG EF

(1 )求证:四边形 OEFG 是矩形;

2 )若 AD = 10 EF = 4 ,求 OE BG 的长.

来源:2020年北京市高级中等学校中考数学试卷
  • 更新:2022-05-11
  • 题型:未知
  • 难度:未知

已知:如图, A B C 为锐角三角形, A B = B C C D A B

求作:线段 BP ,使得点 P 在直线 CD 上,且  A B P = 1 2 BAC

作法:①以点 A 为圆心, AC 长为半径画圆,交直线 CD C P 两点;②连接 BP .线段 BP 就是所求作线段.

1 )使用直尺和圆规,依作法补全图形(保留作图痕迹)

2 )完成下面的证明.

证明: C D A B

A B P =        

A B = A C

∴点 B 在⊙ A 上.

又∵ B P C =   1 2 B A C        )(填推理依据)

A B P =   1 2 B A C

来源:2020年北京市高级中等学校中考数学试卷
  • 更新:2022-05-11
  • 题型:未知
  • 难度:未知

如图,一次函数 y = kx + b 图象与反比例函数 y = m x 的图象交于点 A B ,与 x 轴交于点 C

1 )求一次函数 y = kx + b 与反比例函数 y = m x 的解析式.

2 )求点 C 坐标.

3 )平面上的点 D 与点 O C A 构成平行四边形,请直接写出满足条件的 D 点坐标 ______

来源:2020年河北省保定市定兴县中考数学试卷
  • 更新:2022-05-10
  • 题型:未知
  • 难度:未知

某中学开展 " 阳光体育一小时 " 活动,按学校实际情况,决定开设 A :踢毽子; B :篮球; C :跳绳; D :乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:

(1)本次共调查了 ________ 名学生;

(2)在扇形统计图中, " B " 所在扇形的圆心角是 ________ 度;

(3)将条形统计图补充完整;

(4)若该中学有 1200 名学生,喜欢篮球运动的学生约有 ________ 名.

来源:2020年河北省保定市定兴县中考数学试卷
  • 更新:2022-05-10
  • 题型:未知
  • 难度:未知

如图,桌面上竖直放置着一个等腰直角三角板 ABC ,若测得斜边 AB 的两端点到桌面的距离分别为 AD BE

1 )求证: ADC CEB

2 )若 DE = 10 AD = 7 ,求 BE 的长.

来源:2020年河北省保定市定兴县中考数学试卷
  • 更新:2022-05-10
  • 题型:未知
  • 难度:未知

初中数学解答题