如图,在四边形 中,点 和点 是对角线 上的两点, , ,且 ,过点 作 交 的延长线于点 .
(1)求证:四边形 是平行四边形;
(2)若 , , ,则 的面积是 .
性质探究
如图①,在等腰三角形中,,则底边与腰的长度之比为 .
理解运用
(1)若顶角为的等腰三角形的周长为,则它的面积为 ;
(2)如图②,在四边形中,.
①求证:;
②在边,上分别取中点,,连接.若,,直接写出线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为 (用含的式子表示).
如图,在菱形中,对角线与相交于点,,,点从点出发,沿以每秒2个单位长度的速度向终点运动,当点不与点重合时,过点作于点,作交于点,过点作交(或的延长线)于点,得到矩形,设点运动的时间为秒
(1)求线段的长(用含的代数式表示);
(2)求点与点重合时的值;
(3)设矩形与菱形重叠部分图形的面积与平方单位,求与之间的函数关系式;
(4)矩形的对角线与相交于点,当时,的值为 ;当时,的值为 .
如图1, 绕点 顺时针旋转得 ,射线 交射线 于点 .
(1) 与 的关系是 ;
(2)如图2,当旋转角为 时,点 ,点 与线段 的中点 恰好在同一直线上,延长 至点 ,使 ,连接 .
① 与 的关系是 ,请说明理由;
②如图3,连接 , ,若 , ,求线段 的长度.
如图1和2,中,,,.点为延长线上一点,过点作切于点,设.
(1)如图1,为何值时,圆心落在上?若此时交于点,直接指出与的位置关系;
(2)当时,如图2,与交于点,求的度数,并通过计算比较弦与劣弧长度的大小;
(3)当与线段只有一个公共点时,直接写出的取值范围.
如图,点在数轴上对应的数为26,以原点为圆心,为半径作优弧,使点在右下方,且,在优弧上任取一点,且能过作直线交数轴于点,设在数轴上对应的数为,连接.
(1)若优弧上一段的长为,求的度数及的值;
(2)求的最小值,并指出此时直线与所在圆的位置关系;
(3)若线段的长为12.5,直接写出这时的值.
如图,点 是矩形 的边 延长线上一点,以 为直径的 交矩形对角
线 于点 ,在线段 上取一点 ,连接 ,使 .
(1)求证: 是 的切线;
(2)若 , , ,求 的长.
平面内,如图,在中,,,,点为边上任意点,连接,将绕点逆时针旋转得到线段.
(1)当时,求的大小;
(2)当时,求点与点间的距离(结果保留根号);
(3)若点恰好落在的边所在的直线上,直接写出旋转到所扫过的面积.(结果保留
在 中, , , 是 边上一点,且 , 是 的中点, 是 的中线.
(1)如图 ,连接 ,请直接写出 和 的数量关系: ;
(2)点 是射线 上的一个动点,将射线 绕点 逆时针旋转得射线 ,使 , 与射线 交于点 .
①如图 ,猜想并证明线段 和线段 之间的数量关系;
②若 , ,当 时,请直接写出线段 的长度(用含 的代数式表示).
如图,是的直径,过外一点作的两条切线,,切点分别为,,连接,.
(1)求证:;
(2)连接,,若,,,求的长.
如图,已知 是 的直径, 是 所对的圆周角, .
(1)求 的度数;
(2)过点 作 ,垂足为 , 的延长线交 于点 .若 ,求 的长.
如图,AB为⊙O的弦,C为劣弧AB的中点.
(1)若⊙O的半径为5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断AD与⊙O的位置关系,并说明理由.
如图, 内接于 , 是 的直径,弦 与 交于点 ,连接 ,过点 作直线 ,使 .
(1)求证:直线 是 的切线.
(2)若 , , ,求 的长.
气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东450方向的B点生成,测得。台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处。因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西600方向继续移动,以O为原点建立如图所示的直角坐标系。
(1)台风中心生成点B的坐标为( ),台风中心转折点C的坐标为( );(结果保留根号)
(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点A)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?
如图,某大楼的顶部树有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度,AB=10米,AE=15米.
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:)