如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG//AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒
(1)求线段EF的长(用含t的代数式表示);
(2)求点H与点D重合时t的值;
(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;
(4)矩形EFHG的对角线EH与FG相交于点O',当OO'//AD时,t的值为 ;当OO'⊥AD时,t的值为 .
小勇收集了我省四张著名的旅游景点图片(大小、形状及背面完全相同):太原以南的壶口瀑布和平遥古城,太原以北的云岗石窟和五台山。他与爸爸玩游戏:把这四张图片背面朝上洗匀后,随机抽取一张(不放回),再抽取一张,若抽到两个景点都在太原以南或都在太原以北,则爸爸同意带他到这两个景点旅游,否则,只能去一个景点旅游。请你用列表或画树状图的方法求小勇能去两个景点旅游的概率(四张图片分别用(H,P,Y,W表示)。
如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。 (1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。 ①作∠DAC的平分线AM。②连接BE并延长交AM于点F。 (2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由。
解方程:
(1)计算:. (2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题。………………………第一步…………………………………………………………第二步……………………………………………………………第三步………………………………………………………………………第四步小明的解法从第 步开始出现错误,正确的化简结果是 。
如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为 m.