如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG//AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒
(1)求线段EF的长(用含t的代数式表示);
(2)求点H与点D重合时t的值;
(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;
(4)矩形EFHG的对角线EH与FG相交于点O',当OO'//AD时,t的值为 ;当OO'⊥AD时,t的值为 .
如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系. (1) 直接写出点M及抛物线顶点P的坐标; (2) 求出这条抛物线的函数解析式; (3) 若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?
如图,在Rt△ABC中,∠C=90°,O是斜边AB上的中点,AE=CE,BF∥AC. (1)求证:△AOE≌△BOF; (2)求证:四边形BCEF是矩形.
某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题: (1)该地出租车的起步价是元; (2)当x>2时,求y与x之间的函数关系式; (3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?
如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). (1)请画出△ABC向左平移5个单位长度后得到的△ABC; (2)请画出△ABC关于原点对称的△ABC;
解方程:=0.