初中数学

如图,点是线段上一点,,以点为圆心,的长为半径作,过点的垂线交两点,点在线段的延长线上,连接于点,以为边作

(1)求证:的切线;

(2)若,求四边形重叠部分的面积;

(3)若,连接,求的长.

来源:2019年湖北省宜昌市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,中,,一同学利用直尺和圆规完成如下操作:

①以点为圆心,以为半径画弧,交于点;分别以点为圆心,以大于的长为半径画弧,两弧交点,作射线

②以点为圆心,以适当的长为半径画弧,交于点,交的延长线于点;分别以点为圆心,以大于的长为半径画弧,两弧交于点,作直线的延长线于点,交射线于点

请你观察图形,根据操作结果解答下列问题;

(1)线段的大小关系是  

(2)过点的延长线于点,若,求的值.

来源:2019年湖北省孝感市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,已知 A B O 上两点, ΔOAB 外角的平分线交 O 于另一点 C CD AB AB 的延长线于 D

(1)求证: CD O 的切线;

(2) E AB ̂ 的中点, F O 上一点, EF AB G ,若 tan AFE = 3 4 BE = BG EG = 3 10 ,求 O 的半径.

来源:2018年山东省莱芜市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,点的内心,的延长线和的外接圆相交于点,过作直线

(1)求证:的切线;

(2)若,求优弧的长.

来源:2019年湖北省襄阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在中,的中点,以为直径的分别交于点两点,过点于点

(1)试判断的位置关系,并说明理由.

(2)若,求的长.

来源:2019年湖北省咸宁市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = m BC = n m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP

(1)若 m = 4 n = 3 ,且 PQ AB ,求 BP 的长;

(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m n 之间的关系式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图 AB O 的直径, PA O 相切于点 A BP O 相交于点 D C O 上的一点,分别连接 CB CD BCD = 60 °

(1)求 ABD 的度数;

(2)若 AB = 6 ,求 PD 的长度.

来源:2018年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形的顶点坐标分别为.动点从点出发,以每秒3个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒2个单位长度的速度沿边向终点运动.设运动的时间为秒,

(1)直接写出关于的函数解析式及的取值范围:  

(2)当时,求的值;

(3)连接于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.

来源:2019年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

中,上一点,连接

(1)如图1,若延长线上一点,垂直,求证:

(2)过点为垂足,连接并延长交于点

①如图2,若,求证:

②如图3,若的中点,直接写出的值.(用含的式子表示)

来源:2019年湖北省武汉市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

问题情境:

在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片 ABCD 沿对角线 AC 剪开,得到 ΔABC ΔACD .并且量得 AB = 2 cm AC = 4 cm

操作发现:

(1)将图1中的 ΔACD 以点 A 为旋转中心,按逆时针方向旋转 α ,使 α = BAC ,得到如图2所示的△ AC ' D ,过点 C AC ' 的平行线,与 D C ' 的延长线交于点 E ,则四边形 ACEC ' 的形状是  

(2)创新小组将图1中的 ΔACD 以点 A 为旋转中心,按逆时针方向旋转,使 B A D 三点在同一条直线上,得到如图3所示的△ AC ' D ,连接 C C ' ,取 CC ' 的中点 F ,连接 AF 并延长至点 G ,使 FG = AF ,连接 CG C ' G ,得到四边形 ACGC ' ,发现它是正方形,请你证明这个结论.

实践探究:

(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将 ΔABC 沿着 BD 方向平移,使点 B 与点 A 重合,此时 A 点平移至 A ' 点, A ' C BC ' 相交于点 H ,如图4所示,连接 CC ' ,试求 tan C ' CH 的值.

来源:2018年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在中,,以为直径的分别交于点,点的延长线上,且

(1)求证:的切线;

(2)若的直径为3,,求的长.

来源:2019年湖北省随州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,的直径,点上一点,点是半径上一动点(不与重合),过点作射线,分别交弦两点,在射线上取点,使

(1)求证:的切线;

(2)当点的中点时,

①若,判断以为顶点的四边形是什么特殊四边形,并说明理由;

②若,且,求的长.

来源:2019年湖北省荆州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AD ΔABC 的角平分线,点 O 在边 AB 上.过点 A D 的圆的圆心 O 在边 AB 上,它与边 AB 交于另一点 E

(1)试判断 BC 与圆 O 的位置关系,并说明理由;

(2)若 AC = 6 sin B = 3 5 ,求 AD 的长.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

关于 x 的方程 2 x 2 5 x sin A + 2 = 0 有两个相等的实数根,其中 A 是锐角三角形 ABC 的一个内角.

(1)求 sin A 的值;

(2)若关于 y 的方程 y 2 10 y + k 2 4 k + 29 = 0 的两个根恰好是 ΔABC 的两边长,求 ΔABC 的周长.

来源:2018年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知锐角的外接圆圆心为,半径为

(1)求证:

(2)若,求的长及的值.

来源:2019年湖北省荆门市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

初中数学解直角三角形解答题