如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H作AH的垂线交⊙O于C,N两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作▱ABCD.
(1)求证:AD是⊙O的切线;
(2)若OH=13AH,求四边形AHCD与⊙O重叠部分的面积;
(3)若NH=13AH,BN=54,连接MN,求OH和MN的长.
如图所示:在平面直角坐标系中,网格中每一个小正方形的边长为l个单位长度;(1)将△ABC向轴正方向平移5个单位得△A1B1C1,(2)将△ABC再以原点O为旋转中心,旋转l80°得△A2B2C2,(3)将△ABC再以点B为旋转中心,顺时针旋转90°得△A3B3C3,画出平移和旋转后的图形,并标明对应字母.
若,是方程的两个根.(1)求和的值.(2)求的值.(3)求的值.
解方程(每题4+6分,共10分)(1) (2)先化简,再求值:,其中x为方程的根.
如图,抛物线交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线过点C,交y轴于D点.(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.
如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________________.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使,请直接写出相应的BF的长:BF=_____.