如图,在 中, ,以 为直径的 交 于点 , 与过点 的切线互相垂直,垂足为 .
(1)求证: 平分 ;
(2)若 ,求 的值.
如图,在 中, ,以斜边 上的中线 为直径作 ,与 交于点 ,与 的另一个交点为 ,过 作 ,垂足为 .
(1)求证: 是 的切线;
(2)若 的直径为5, ,求 的长.
如图,在矩形 中, , ,点 是 边上的点, ,连接 , 交于点 .
(1)求证: ;
(2)连接 ,求 的值;
(3)连接 交 于点 ,求 的值.
如图, 为半圆 的直径, 为半圆 上一点, 与过点 的切线垂直,垂足为 , 交半圆 于点 .
(1)求证: 平分 ;
(2)若 ,试判断以 , , , 为顶点的四边形的形状,并说明理由.
如图,在平行四边形 中, ,点 是 的中点,连接 并延长,交 的延长线于点 ,连接 .
(1)求证:四边形 是菱形;
(2)若 , ,求菱形 的面积.
在等腰 中, , 是 的角平分线,过点 作 于点 , .将 绕点 旋转,使 的两边交直线 于点 ,交直线 于点 ,请解答下列问题:
(1)当 绕点 旋转到如图①的位置时,求证: ;
(2)当 绕点 旋转到如图②,图③的位置时,请分别写出线段 , , 之间的数量关系,不需要证明;
(3)在(1)和(2)的条件下, , ,则 , .
如图, 中, , 的平分线交 于 , 交 的延长线于点 , 交 于点 .
(1)若 ,求 的度数;
(2)若 ,求 的长.
已知: 是正方形 的外接圆,点 在 上,连接 、 ,点 在 上连接 、 , 与 、 分别交于点 、点 ,且 平分 .
(1)如图1,求证: ;
(2)如图2,在线段 上取一点 (点 不与点 、点 重合),连接 交 于点 ,过点 作 交 于点 ,过点 作 ,垂足为点 ,当 时,求证: ;
(3)如图3,在(2)的条件下,当 时,延长 交 于点 ,连接 ,若 的面积与 的面积的差为 ,求线段 的长.
如图,在 中, , 平分 交 于点 , 为 上一点,经过点 、 的 分别交 、 于点 、 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径;
(3)求证: .
【发现】如图①,已知等边 ,将直角三角板的 角顶点 任意放在 边上(点 不与点 、 重合),使两边分别交线段 、 于点 、 .
(1)若 , , ,则 ;
(2)求证: .
【思考】若将图①中的三角板的顶点 在 边上移动,保持三角板与边 、 的两个交点 、 都存在,连接 ,如图②所示,问:点 是否存在某一位置,使 平分 且 平分 ?若存在,求出 的值;若不存在,请说明理由.
【探索】如图③,在等腰 中, ,点 为 边的中点,将三角形透明纸板的一个顶点放在点 处(其中 ,使两条边分别交边 、 于点 、 (点 、 均不与 的顶点重合),连接 .设 ,则 与 的周长之比为 (用含 的表达式表示).
将在同一平面内如图放置的两块三角板绕公共顶点 旋转,连接 , .探究 与 的比是否为定值.
(1)两块三角板是完全相同的等腰直角三角板时, 是否为定值?如果是,求出此定值,如果不是,说明理由.(图①
(2)一块是等腰直角三角板,另一块是含有 角的直角三角板时, 是否为定值?如果是,求出此定值,如果不是,说明理由.(图②
(3)两块三角板中, , , , , , , , 为常数), 是否为定值?如果是,用含 , , , 的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③
如图所示:与的边相切于点,与、分别交于点、,.是的直径.连接,过作交于,连接、,与交于点.
(1)求证:直线与相切;
(2)求证:;
(3)若,时,过作交于、两点在线段上),求的长.
如图,是的直径,为上一点,连接,于点,是直径延长线上一点,且.
(1)求证:是的切线;
(2)若,,求的长.
如图,四边形 是平行四边形,延长 至点 ,使 ,连接 .
(1)求证:四边形 是平行四边形;
(2)若 , ,求点 到点 的距离.