如图,在矩形 ABCD 中, AD = 5 , CD = 4 ,点 E 是 BC 边上的点, BE = 3 ,连接 AE , DF ⊥ AE 交于点 F .
(1)求证: ΔABE ≅ ΔDFA ;
(2)连接 CF ,求 sin ∠ DCF 的值;
(3)连接 AC 交 DF 于点 G ,求 AG GC 的值.
在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过点、.
(1)求、满足的关系式及的值.
(2)当时,若的函数值随的增大而增大,求的取值范围.
(3)如图,当时,在抛物线上是否存在点,使的面积为1?若存在,请求出符合条件的所有点的坐标;若不存在,请说明理由.
如图,在正方形中,是边上一点,(与、不重合),连接,将沿所在的直线折叠得到,延长交于,连接,作,与的延长线交于点,连接.显然是的平分线,是的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于的角平分线),并说明理由.
汛期到来,山洪暴发.下表记录了某水库内水位的变化情况,其中表示时间(单位:,表示水位高度(单位:,当时,达到警戒水位,开始开闸放水.
0
2
4
6
8
10
12
14
16
18
20
15
17
14.4
10.3
9
7.2
(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.
(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.
(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到.
如图,是的直径,是上一点,过点作,交的延长线于,交于点,是的中点,连接.
(1)求证:是的切线.
(2)若,求证:.
鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿方向开挖隧道,为了加快施工速度,要在小山的另一侧、、共线)处同时施工.测得,,,求的长.