如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° ,以斜边 AB 上的中线 CD 为直径作 ⊙ O ,与 BC 交于点 M ,与 AB 的另一个交点为 E ,过 M 作 MN ⊥ AB ,垂足为 N .
(1)求证: MN 是 ⊙ O 的切线;
(2)若 ⊙ O 的直径为5, sin B = 3 5 ,求 ED 的长.
某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生有 人;
(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .
已知:如图,抛物线 y = a x 2 + bx + c 与坐标轴分别交于点 A ( 0 , 6 ) , B ( 6 , 0 ) , C ( − 2 , 0 ) ,点 P 是线段 AB 上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点 P 运动到什么位置时, ΔPAB 的面积有最大值?
(3)过点 P 作 x 轴的垂线,交线段 AB 于点 D ,再过点 P 做 PE / / x 轴交抛物线于点 E ,连接 DE ,请问是否存在点 P 使 ΔPDE 为等腰直角三角形?若存在,求出点 P 的坐标;若不存在,说明理由.
已知:如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° ,点 M 是斜边 AB 的中点, MD / / BC ,且 MD = CM , DE ⊥ AB 于点 E ,连接 AD 、 CD .
(1)求证: ΔMED ∽ ΔBCA ;
(2)求证: ΔAMD ≅ ΔCMD ;
(3)设 ΔMDE 的面积为 S 1 ,四边形 BCMD 的面积为 S 2 ,当 S 2 = 17 5 S 1 时,求 cos ∠ ABC 的值.
如图是小红在一次放风筝活动中某时段的示意图,她在 A 处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成 30 ° 角,线段 A A 1 表示小红身高1.5米.
(1)当风筝的水平距离 AC = 18 米时,求此时风筝线 AD 的长度;
(2)当她从点 A 跑动 9 2 米到达点 B 处时,风筝线与水平线构成 45 ° 角,此时风筝到达点 E 处,风筝的水平移动距离 CF = 10 3 米,这一过程中风筝线的长度保持不变,求风筝原来的高度 C 1 D .
已知:如图,在 ΔABC 中, AB = AC ,点 P 是底边 BC 上一点且满足 PA = PB , ⊙ O 是 ΔPAB 的外接圆,过点 P 作 PD / / AB 交 AC 于点 D .
(1)求证: PD 是 ⊙ O 的切线;
(2)若 BC = 8 , tan ∠ ABC = 2 2 ,求 ⊙ O 的半径.