如图,在 ΔABC 中, ∠ ACB = 90 ° , AC = m , BC = n , m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP .
(1)若 m = 4 , n = 3 ,且 PQ ⊥ AB ,求 BP 的长;
(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m 与 n 之间的关系式.
如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°求∠A的度数;若点F在⊙O上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.
班主任让同学们为班会活动设计一个抽奖方案,拟使中奖概率为60%.小明的设计方案:在一个不透明的盒子中,放入10个球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有▲ 个,白球应有▲ 个;小兵的设计方案:在一个不透明的盒子中,放入4个黄球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?试说明理由.
如图,已知正方形ABCD的边长是2,点E是AB的中点,延长BC到点F,使CF=AE.现把向左平移,使与重合,得,交于点.证明:AH⊥DE求的长.
随着“微博潮”的流行,初中学生也开始忙着“织围脖”,某校在上微博的280名学生中随机抽取了部分学生调查他们平常每天上微博的时间,绘制了扇形统计图和频数分布直方图(从左向右依次为第一、二、三、四小组),请根据图中信息,回答下列问题:本次调查共抽取了▲名学生;将频数分布直方图补充完整;被调查的学生中上微博时间中位数落在▲这一小组内样本中,平均每天上微博的时间为0.5小时这一组的频率是▲;请估计该校上微博的学生中,大约有▲名学生平均每天上微博的时间不少于1小时.
先化简后求值:,其中x=.