如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.
(1)直接写出y关于t的函数解析式及t的取值范围: ;
(2)当PQ=35时,求t的值;
(3)连接OB交PQ于点D,若双曲线y=kx(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.
已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合) (1)求点A、E的坐标; (2)若y=过点A、E,求抛物线的解析式。 (3)连结PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由
某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。 (1)求乙工程队单独做需要多少天完成? (2)将工程分两部分,甲做其中一部分用了x天,乙做另一部分用了y天,其中x、y均为正整数,且x<15,y<70,求x、y.
下图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图 (1)求该班有多少名学生? (2)补上步行分布直方图的空缺部分; (3)在扇形统计图中,求骑车人数所占的圆心角度数。 (4)若全年级有500人,估计该年级步行人数
大楼AD的高为10米,远处有一塔BC,某人在楼底A处测得踏顶B处的仰角为60º,爬到楼顶D点测得塔顶B点的仰角为30º,求塔BC的高度
先化简,再求值:()÷,其中x=2005