初中数学

如图1,在中,,点边上的动点(点不与点重合).以为顶点作,射线边于点,过点交射线于点,连接

(1)求证:

(2)当时(如图,求的长;

(3)点边上运动的过程中,是否存在某个位置,使得?若存在,求出此时的长;若不存在,请说明理由.

来源:2019年四川省成都市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,的直径,为圆上的两点,,弦相交于点

(1)求证:

(2)若,求的半径;

(3)在(2)的条件下,过点的切线,交的延长线于点,过点两点(点在线段上),求的长.

来源:2019年四川省成都市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,的直径,上的一点,的延长线交于点,连接

(1)求证:的切线;

(2)若的中点,求的值.

来源:2019年四川省阿坝州中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.

(1)温故:如图1,在中,于点,正方形的边上,顶点分别在上,若,求正方形的边长(用表示).

(2)操作:如何画出这个正方形呢?

如图2,小波画出了图1的,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在上任取一点,画正方形,使点边上,点内,然后连结,并延长交于点,画于点于点于点,得到四边形

(3)推理:证明图2中的四边形是正方形.

(4)拓展:小波把图2中的线段称为“波利亚线”,在该线上截取,连结(如图,当时,求“波利亚线” 的长(用表示).

请帮助小波解决“温故”、“推理”、“拓展”中的问题.

来源:2019年浙江省舟山市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线分别交轴、轴于点,正方形的顶点在第二象限内,中点,于点,连结.动点上从点向终点匀速运动,同时,动点在直线上从某一点向终点匀速运动,它们同时到达终点.

(1)求点的坐标和的长.

(2)设点,当时,求点的坐标.

(3)根据(2)的条件,当点运动到中点时,点恰好与点重合.

①延长交直线于点,当点在线段上时,设,求关于的函数表达式.

②当的一边平行时,求所有满足条件的的长.

来源:2019年浙江省温州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,正方形的边长为2,的中点,延长线上的一点,连接于点

(1)求的值;

(2)如图1,连接,在线段上取一点,使,连接,求证:

(3)如图2,过点于点,在线段上取一点,使,连接.将绕点旋转,使点旋转后的对应点落在边上.请判断点旋转后的对应点是否落在线段上,并说明理由.

来源:2019年浙江省台州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,矩形中,,点分别在边上,点分别在边上,交于点,记

(1)若的值为1,当时,求的值.

(2)若的值为,求的最大值和最小值.

(3)若的值为3,当点是矩形的顶点,时,求的值.

来源:2019年浙江省绍兴市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在中,平分于点,过点于点,点是线段上的动点,连结并延长分别交于点

(1)求的长.

(2)若点是线段的中点,求的值.

(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得

来源:2019年浙江省衢州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图1,经过等边的顶点(圆心内),分别与的延长线交于点,连结于点

(1)求证:

(2)当时,求的长.

(3)设

①求关于的函数表达式;

②如图2,连结,若的面积是面积的10倍,求的值.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.

(1)如图1,在中,的角平分线,分别是上的点.

求证:四边形是邻余四边形.

(2)如图2,在的方格纸中,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,在格点上.

(3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长于点.若的中点,,求邻余线的长.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在等腰中,,点分别在边上,将线段绕点按逆时针方向旋转得到

(1)如图1,若,点与点重合,相交于点.求证:

(2)已知点的中点.

①如图2,若,求的长.

②若,是否存在点,使得是直角三角形?若存在,求的长;若不存在,试说明理由.

来源:2019年浙江省金华市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.

(1)温故:如图1,在中,于点,正方形的边上,顶点分别在上,若,求正方形的边长.

(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画,在上任取一点,画正方形,使边上,内,连结并延长交于点,画于点于点于点,得到四边形.小波把线段称为“波利亚线”.

(3)推理:证明图2中的四边形是正方形.

(4)拓展:在(2)的条件下,在射线上截取,连结(如图.当时,猜想的度数,并尝试证明.

请帮助小波解决“温故”、“推理”、“拓展”中的问题.

来源:2019年浙江省嘉兴市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线轴交于两点(点在点左侧),与轴交于点,顶点为,对称轴与轴交于点

(1)如图1,连接.若点为直线上方抛物线上一动点,过点轴交于点,作于点,过点轴于点.点分别在对称轴和轴上运动,连接.当的周长最大时,求的最小值及点的坐标.

(2)如图2,将抛物线沿射线方向平移,当抛物线经过原点时停止平移,此时抛物线顶点记为为直线上一点,连接点,△能否构成等腰三角形?若能,直接写出满足条件的点的坐标;若不能,请说明理由.

来源:2019年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图1,二次函数 y = 1 2 x 2 - 2 x + 1 的图象与一次函数 y = kx + b ( k 0 ) 的图象交于 A B 两点,点 A 的坐标为 ( 0 , 1 ) ,点 B 在第一象限内,点 C 是二次函数图象的顶点,点 M 是一次函数 y = kx + b ( k 0 ) 的图象与 x 轴的交点,过点 B x 轴的垂线,垂足为 N ,且 S ΔAMO : S 四边形 AONB = 1 : 48

(1)求直线 AB 和直线 BC 的解析式;

(2)点 P 是线段 AB 上一点,点 D 是线段 BC 上一点, PD / / x 轴,射线 PD 与抛物线交于点 G ,过点 P PE x 轴于点 E PF BC 于点 F .当 PF PE 的乘积最大时,在线段 AB 上找一点 H (不与点 A ,点 B 重合),使 GH + 2 2 BH 的值最小,求点 H 的坐标和 GH + 2 2 BH 的最小值;

(3)如图2,直线 AB 上有一点 K ( 3 , 4 ) ,将二次函数 y = 1 2 x 2 - 2 x + 1 沿直线 BC 平移,平移的距离是 t ( t 0 ) ,平移后抛物线上点 A ,点 C 的对应点分别为点 A ' ,点 C ' ;当△ A ' C ' K 是直角三角形时,求 t 的值.

来源:2016年重庆市中考数学试卷(b卷)
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,的直径,两点在的延长线上,上的点,且,延长,使得,设

(1)求证:

(2)求的长;

(3)若点三点确定的圆上,求的长.

来源:2019年云南省中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题