如图,AB为⊙O的直径,C,D为圆上的两点,OC//BD,弦AD,BC相交于点E.
(1)求证:AĈ=CD̂;
(2)若CE=1,EB=3,求⊙O的半径;
(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ//CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.
在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.
2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?
如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.
如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)
先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.