如图,二次函数 的图象与 轴交于点 , ,与 轴交于点 ,抛物线的顶点为 ,其对称轴与线段 交于点 ,垂直于 轴的动直线 分别交抛物线和线段 于点 和点 ,动直线 在抛物线的对称轴的右侧(不含对称轴)沿 轴正方向移动到 点.
(1)求出二次函数 和 所在直线的表达式;
(2)在动直线 移动的过程中,试求使四边形 为平行四边形的点 的坐标;
(3)连接 , ,在动直线 移动的过程中,抛物线上是否存在点 ,使得以点 , , 为顶点的三角形与 相似?如果存在,求出点 的坐标;如果不存在,请说明理由.
直线 交 轴于点 ,交 轴于点 ,顶点为 的抛物线 经过点 ,交 轴于另一点 ,连接 , , ,如图所示.
(1)直接写出抛物线的解析式和点 , , 的坐标;
(2)动点 在 上以每秒2个单位长的速度由点 向点 运动,同时动点 在 上以每秒3个单位长的速度由点 向点 运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为 秒. 交线段 于点 .
①当 时,求 的值;
②过点 作 ,垂足为点 ,过点 作 交线段 或 于点 ,当 时,求 的值.
如图(1),已知点 在正方形 的对角线 上, ,垂足为点 , ,垂足为点 .
(1)证明与推断:
①求证:四边形 是正方形;
②推断: 的值为
(2)探究与证明:
将正方形 绕点 顺时针方向旋转 角 ,如图(2)所示,试探究线段 与 之间的数量关系,并说明理由;
(3)拓展与运用:
正方形 在旋转过程中,当 , , 三点在一条直线上时,如图(3)所示,延长 交 于点 .若 , ,则 .
如图, 为 的直径, 为 上一点,经过点 的切线交 的延长线于点 , 交 的延长线于点 , 交 于 , 于 ,分别交 、 于 、 ,连接 , .
(1)求证: 平分 ;
(2)若 , ,
①求 的半径;
②求 的长.
如图,四边形 内接于 , 为 的直径, 与 交于点 , 为 延长线上一点,连接 ,且 .
(1)求证: 为 的切线;
(2)若 , ,求 长;
(3)在(2)的条件下,若 ,求 的面积.
如图,在 中, , 是中线, ,一个以点 为顶点的 角绕点 旋转,使角的两边分别与 、 的延长线相交,交点分别为点 , , 与 交于点 , 与 交于点 .
(1)如图1,若 ,求证: ;
(2)如图2,在 绕点 旋转的过程中:
①探究三条线段 , , 之间的数量关系,并说明理由;
②若 , ,求 的长.
如图,在平面直角坐标系中,四边形 的边 在 轴上,点 在 轴的负半轴上,直线 ,且 , ,将经过 、 两点的直线 向右平移,平移后的直线与 轴交于点 ,与直线 交于点 ,设 的长为 .
(1)四边形 的面积为 ;
(2)设四边形 被直线 扫过的面积(阴影部分)为 ,请直接写出 关于 的函数解析式;
(3)当 时,直线 上有一动点 ,作 直线 于点 ,交 轴于点 ,将 沿直线 折叠得到 ,探究:是否存在点 ,使点 恰好落在坐标轴上?若存在,请求出点 的坐标;若不存在,请说明理由.
在 中, ,点 与点 在 同侧, ,且 ,过点 作 交 于点 , 为 的中点,连接 , .
(1)如图1,当 时,线段 与 的数量关系是 ;
(2)如图2,当 时,试探究线段 与 的数量关系,并证明你的结论;
(3)如图3,当 时,求 的值.
已知四边形 的一组对边 、 的延长线交于点 .
(1)如图1,若 ,求证: ;
(2)如图2,若 , , , , 的面积为6,求四边形 的面积;
(3)如图3,另一组对边 、 的延长线相交于点 .若 , , ,直接写出 的长(用含 的式子表示)
如图,在平面直角坐标系中,四边形 的边 在 轴上,点 在 轴的负半轴上,直线 ,且 , ,将经过 、 两点的直线 向右平移,平移后的直线与 轴交于点 ,与直线 交于点 ,设 的长为 .
(1)四边形 的面积为 ;
(2)设四边形 被直线 扫过的面积(阴影部分)为 ,请直接写出 关于 的函数解析式;
(3)当 时,直线 上有一动点 ,作 直线 于点 ,交 轴于点 ,将 沿直线 折叠得到 ,探究:是否存在点 ,使点 恰好落在坐标轴上?若存在,请求出点 的坐标;若不存在,请说明理由.
如图在平面直角坐标系中,直线 与 轴、 轴分别交于 、 两点,点 、 同时从点 出发,运动时间为 秒.其中点 沿射线 运动,速度为每秒4个单位长度,点 沿射线 运动,速度为每秒5个单位长度.以点 为圆心, 长为半径作 .
(1)求证:直线 是 的切线;
(2)过点 左侧 轴上的任意一点 ,作直线 的垂线 ,垂足为 .若 与 相切于点 ,求 与 的函数关系式(不需写出自变量的取值范围);
(3)在(2)的条件下,是否存在点 ,直线 、 、 轴与 同时相切?若存在,请直接写出此时点 的坐标;若不存在,请说明理由.
已知:如图所示,在平面直角坐标系 中, , , ,若点 是边 上的一个动点(与点 、 不重合),过点 作 交 于点 .
(1)求点 的坐标;
(2)当 的周长与四边形 的周长相等时,求 的长;
(3)在 上是否存在点 ,使得 为等腰直角三角形?若存在,请求出此时 的长;若不存在,请说明理由.
已知:如图,在 中, , 的平分线 交 于点 ,过点 作 交 于点 ,以 为直径作 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
已知:如图所示,在平面直角坐标系 中,四边形 是矩形, , ,动点 从点 出发,沿射线 方向以每秒2个单位长度的速度运动;同时,动点 从点 出发,沿 轴正半轴方向以每秒1个单位长度的速度运动.设点 、点 的运动时间为 .
(1)当 时,求经过点 , , 三点的抛物线的解析式;
(2)当 时,求 的值;
(3)当线段 与线段 相交于点 ,且 时,求 的值;
(4)连接 ,当点 , 在运动过程中,记 与矩形 重叠部分的面积为 ,求 与 的函数关系式.