已知四边形 ABCD 的一组对边 AD 、 BC 的延长线交于点 E .
(1)如图1,若 ∠ ABC = ∠ ADC = 90 ° ,求证: ED ⋅ EA = EC ⋅ EB ;
(2)如图2,若 ∠ ABC = 120 ° , cos ∠ ADC = 3 5 , CD = 5 , AB = 12 , ΔCDE 的面积为6,求四边形 ABCD 的面积;
(3)如图3,另一组对边 AB 、 DC 的延长线相交于点 F .若 cos ∠ ABC = cos ∠ ADC = 3 5 , CD = 5 , CF = ED = n ,直接写出 AD 的长(用含 n 的式子表示)
已知等腰三角形一边长为a,一边长b,且(2a-b)²+|9-a²|=0 。求它的周长。
计算:(π-3)0-|-3|+(-)-2-。
计算: ;
(+)-
32-12=8×1 52-32=8×2 72-52=8×3 92-72=8×4 …… 观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.