已知:如图所示,在平面直角坐标系 xOy 中,四边形 OABC 是矩形, OA = 4 , OC = 3 ,动点 P 从点 C 出发,沿射线 CB 方向以每秒2个单位长度的速度运动;同时,动点 Q 从点 O 出发,沿 x 轴正半轴方向以每秒1个单位长度的速度运动.设点 P 、点 Q 的运动时间为 t ( s ) .
(1)当 t = 1 s 时,求经过点 O , P , A 三点的抛物线的解析式;
(2)当 t = 2 s 时,求 tan ∠ QPA 的值;
(3)当线段 PQ 与线段 AB 相交于点 M ,且 BM = 2 AM 时,求 t ( s ) 的值;
(4)连接 CQ ,当点 P , Q 在运动过程中,记 ΔCQP 与矩形 OABC 重叠部分的面积为 S ,求 S 与 t 的函数关系式.
(本题5分)计算:|-2|-(3-π)0+2 .
计算:.
计算:
.