如图,在等腰RtΔABC中,∠ACB=90°,AB=142,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.
(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.
(2)已知点G为AF的中点.
①如图2,若AD=BD,CE=2,求DG的长.
②若AD=6BD,是否存在点E,使得ΔDEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.
解不等式组:
已知:如图,点E、C、D、A在同一条直线上,AB//DF,ED= AB,∠E=∠CPD. 求证:△ABC≌△DEF.
在平面直角坐标系xOy中,直线分别与x轴,y轴交于过点A,B,点C是第一象限内的一点,且AB=AC,AB⊥AC,抛物线经过A,C两点,与轴的另一交点为D. (1)求此抛物线的解析式; (2)判断直线AB与CD的位置关系,并证明你的结论; (3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,B,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E. (1)如图1,猜想∠QEP=°; (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明; (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.
已知:关于x的一元二次方程mx2﹣(4m+1)x+3m+3="0" (m>1). (1)求证:方程有两个不相等的实数根; (2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=x1﹣3x2,求这个函数的解析式; (3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围.