已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.
如图,矩形ABCD的对角线AC、BD交于点O,∠AOB=60°,AB=3,求BD的长.
解方程组.
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N. (1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x. i.若点P正好在边BC上,求x的值; ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值. (2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.
如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8). (1)求抛物线的解析式及其顶点D的坐标; (2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由; (3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
如图,直线y=-x+4与坐标轴分别交于点M、N. (1)求M,N两点的坐标; (2)若点P在坐标轴上,且P到直线y=-x+4的距离为,求符合条件的P点坐标.