在平面直角坐标系中,抛物线y=-34x2+32x+23与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.
(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE//y轴交BC于点E,作PF⊥BC于点F,过点B作BG//AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当ΔPEF的周长最大时,求PH+HK+32KG的最小值及点H的坐标.
(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D',N为直线DQ上一点,连接点D',C,N,△D'CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.
如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算蔬菜的产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°.请你和小明一起来求这块土地的面积.
一种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?
解方程: .
先化简,再取一个你喜欢的数代入求值
已知如图,二次函数图象的顶点为,与轴交于、两点(在点右侧),点、关于直线:对称.(1)求、两点坐标,并证明点在直线上;(2)求二次函数解析式;(3)过点作直线∥交直线于点,、分别为直线和直线上的两个动点,连接、、,求和的最小值.