如图,∠MBN的两边BM,BN上分别有两点A、C,满足BC=2BA,作□ABCD,取AD的中点E,作CF⊥CD,CF与AB所在的直线交于点F。(1)当∠B=时,直接写出∠DEF的度数;(2)在射线BM绕B点旋转的过程中,若∠B=,∠DEF=(<X<,<Y<),求:Y关于X的函数解析式及相应自变量X的取值范围,
如图,已知抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 的对称轴为直线 x = − 1 ,且抛物线与 x 轴交于 A 、 B 两点,与 y 轴交于 C 点,其中 A ( 1 , 0 ) , C ( 0 , 3 ) .
(1)若直线 y = mx + n 经过 B 、 C 两点,求直线 BC 和抛物线的解析式;
(2)在抛物线的对称轴 x = − 1 上找一点 M ,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出点 M 的坐标;
(3)设点 P 为抛物线的对称轴 x = − 1 上的一个动点,求使 ΔBPC 为直角三角形的点 P 的坐标.
如图,在 ΔABC 中, AB = AC , O 为 BC 的中点, AC 与半圆 O 相切于点 D .
(1)求证: AB 是半圆 O 所在圆的切线;
(2)若 cos ∠ ABC = 2 3 , AB = 12 ,求半圆 O 所在圆的半径.
某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:
(1)本次问卷调查共调查了 名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为 ;
(2)补全图①中的条形统计图;
(3)现有最喜爱“新闻节目”(记为 A ) ,“体育节目”(记为 B ) ,“综艺节目”(记为 C ) ,“科普节目”(记为 D ) 的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“ B ”和“ C ”两位观众的概率.
某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.
(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?
(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.
如图,在 ΔABC 中, AD 是 BC 边上的中线, E 是 AD 的中点,过点 A 作 BC 的平行线交 BE 的延长线于点 F ,连接 CF .
(1)求证: AF = DC ;
(2)若 AC ⊥ AB ,试判断四边形 ADCF 的形状,并证明你的结论.